Step | Hyp | Ref
| Expression |
1 | | prdsbas.p |
. . . 4
⊢ 𝑃 = (𝑆Xs𝑅) |
2 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑆) =
(Base‘𝑆) |
3 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → dom 𝑅 = dom 𝑅) |
4 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)) = X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))) |
5 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
6 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
7 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
8 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))) = (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
9 | | eqidd 2739 |
. . . 4
⊢ (𝜑 →
(∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen
∘ 𝑅))) |
10 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
11 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
= (𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
12 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) = (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
13 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) = (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) |
14 | | prdsbas.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
15 | | prdsbas.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15 | prdsval 17166 |
. . 3
⊢ (𝜑 → 𝑃 = (({〈(Base‘ndx), X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ dom
𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |
17 | | eqid 2738 |
. . 3
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
18 | | scaid 17025 |
. . 3
⊢ Scalar =
Slot (Scalar‘ndx) |
19 | | snsstp1 4749 |
. . . . 5
⊢
{〈(Scalar‘ndx), 𝑆〉} ⊆ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉} |
20 | | ssun2 4107 |
. . . . 5
⊢
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉} ⊆ ({〈(Base‘ndx),
X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈ dom
𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) |
21 | 19, 20 | sstri 3930 |
. . . 4
⊢
{〈(Scalar‘ndx), 𝑆〉} ⊆ ({〈(Base‘ndx),
X𝑥
∈ dom 𝑅(Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) |
22 | | ssun1 4106 |
. . . 4
⊢
({〈(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ⊆ (({〈(Base‘ndx),
X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈ dom
𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ dom
𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) |
23 | 21, 22 | sstri 3930 |
. . 3
⊢
{〈(Scalar‘ndx), 𝑆〉} ⊆ (({〈(Base‘ndx),
X𝑥
∈ dom 𝑅(Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ dom
𝑅(Base‘(𝑅‘𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) |
24 | 16, 17, 18, 14, 23 | prdsbaslem 17164 |
. 2
⊢ (𝜑 → (Scalar‘𝑃) = 𝑆) |
25 | 24 | eqcomd 2744 |
1
⊢ (𝜑 → 𝑆 = (Scalar‘𝑃)) |