MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdssca Structured version   Visualization version   GIF version

Theorem prdssca 17084
Description: Scalar ring of a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (𝜑𝑆𝑉)
prdsbas.r (𝜑𝑅𝑊)
Assertion
Ref Expression
prdssca (𝜑𝑆 = (Scalar‘𝑃))

Proof of Theorem prdssca
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . . 4 𝑃 = (𝑆Xs𝑅)
2 eqid 2738 . . . 4 (Base‘𝑆) = (Base‘𝑆)
3 eqidd 2739 . . . 4 (𝜑 → dom 𝑅 = dom 𝑅)
4 eqidd 2739 . . . 4 (𝜑X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)))
5 eqidd 2739 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
6 eqidd 2739 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
7 eqidd 2739 . . . 4 (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
8 eqidd 2739 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
9 eqidd 2739 . . . 4 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅)))
10 eqidd 2739 . . . 4 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
11 eqidd 2739 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
12 eqidd 2739 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
13 eqidd 2739 . . . 4 (𝜑 → (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
14 prdsbas.s . . . 4 (𝜑𝑆𝑉)
15 prdsbas.r . . . 4 (𝜑𝑅𝑊)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15prdsval 17083 . . 3 (𝜑𝑃 = (({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
17 eqid 2738 . . 3 (Scalar‘𝑃) = (Scalar‘𝑃)
18 scaid 16951 . . 3 Scalar = Slot (Scalar‘ndx)
19 snsstp1 4746 . . . . 5 {⟨(Scalar‘ndx), 𝑆⟩} ⊆ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}
20 ssun2 4103 . . . . 5 {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩} ⊆ ({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
2119, 20sstri 3926 . . . 4 {⟨(Scalar‘ndx), 𝑆⟩} ⊆ ({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
22 ssun1 4102 . . . 4 ({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ⊆ (({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
2321, 22sstri 3926 . . 3 {⟨(Scalar‘ndx), 𝑆⟩} ⊆ (({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
2416, 17, 18, 14, 23prdsbaslem 17081 . 2 (𝜑 → (Scalar‘𝑃) = 𝑆)
2524eqcomd 2744 1 (𝜑𝑆 = (Scalar‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cun 3881  wss 3883  {csn 4558  {cpr 4560  {ctp 4562  cop 4564   class class class wbr 5070  {copab 5132  cmpt 5153   × cxp 5578  dom cdm 5580  ran crn 5581  ccom 5584  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  Xcixp 8643  supcsup 9129  0cc0 10802  *cxr 10939   < clt 10940  ndxcnx 16822  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  ·𝑖cip 16893  TopSetcts 16894  lecple 16895  distcds 16897  Hom chom 16899  compcco 16900  TopOpenctopn 17049  tcpt 17066   Σg cgsu 17068  Xscprds 17073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-prds 17075
This theorem is referenced by:  pwssca  17124  xpssca  17204  xpsvsca  17205  prdslmodd  20146  dsmmlss  20861  rrxsca  24465
  Copyright terms: Public domain W3C validator