MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdssca Structured version   Visualization version   GIF version

Theorem prdssca 17167
Description: Scalar ring of a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (𝜑𝑆𝑉)
prdsbas.r (𝜑𝑅𝑊)
Assertion
Ref Expression
prdssca (𝜑𝑆 = (Scalar‘𝑃))

Proof of Theorem prdssca
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . . 4 𝑃 = (𝑆Xs𝑅)
2 eqid 2738 . . . 4 (Base‘𝑆) = (Base‘𝑆)
3 eqidd 2739 . . . 4 (𝜑 → dom 𝑅 = dom 𝑅)
4 eqidd 2739 . . . 4 (𝜑X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)))
5 eqidd 2739 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
6 eqidd 2739 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
7 eqidd 2739 . . . 4 (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
8 eqidd 2739 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
9 eqidd 2739 . . . 4 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅)))
10 eqidd 2739 . . . 4 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
11 eqidd 2739 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
12 eqidd 2739 . . . 4 (𝜑 → (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) = (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
13 eqidd 2739 . . . 4 (𝜑 → (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
14 prdsbas.s . . . 4 (𝜑𝑆𝑉)
15 prdsbas.r . . . 4 (𝜑𝑅𝑊)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15prdsval 17166 . . 3 (𝜑𝑃 = (({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
17 eqid 2738 . . 3 (Scalar‘𝑃) = (Scalar‘𝑃)
18 scaid 17025 . . 3 Scalar = Slot (Scalar‘ndx)
19 snsstp1 4749 . . . . 5 {⟨(Scalar‘ndx), 𝑆⟩} ⊆ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}
20 ssun2 4107 . . . . 5 {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩} ⊆ ({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
2119, 20sstri 3930 . . . 4 {⟨(Scalar‘ndx), 𝑆⟩} ⊆ ({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
22 ssun1 4106 . . . 4 ({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ⊆ (({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
2321, 22sstri 3930 . . 3 {⟨(Scalar‘ndx), 𝑆⟩} ⊆ (({⟨(Base‘ndx), X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑥 ∈ dom 𝑅 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∧ ∀𝑥 ∈ dom 𝑅(𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ sup((ran (𝑥 ∈ dom 𝑅 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) × X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))), 𝑐X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)), 𝑔X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ↦ X𝑥 ∈ dom 𝑅((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥 ∈ dom 𝑅 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
2416, 17, 18, 14, 23prdsbaslem 17164 . 2 (𝜑 → (Scalar‘𝑃) = 𝑆)
2524eqcomd 2744 1 (𝜑𝑆 = (Scalar‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cun 3885  wss 3887  {csn 4561  {cpr 4563  {ctp 4565  cop 4567   class class class wbr 5074  {copab 5136  cmpt 5157   × cxp 5587  dom cdm 5589  ran crn 5590  ccom 5593  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  Xcixp 8685  supcsup 9199  0cc0 10871  *cxr 11008   < clt 11009  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  ·𝑖cip 16967  TopSetcts 16968  lecple 16969  distcds 16971  Hom chom 16973  compcco 16974  TopOpenctopn 17132  tcpt 17149   Σg cgsu 17151  Xscprds 17156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-prds 17158
This theorem is referenced by:  pwssca  17207  xpssca  17287  xpsvsca  17288  prdslmodd  20231  dsmmlss  20951  rrxsca  24560
  Copyright terms: Public domain W3C validator