![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fucbas | Structured version Visualization version GIF version |
Description: The objects of the functor category are functors from πΆ to π·. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
fucbas.q | β’ π = (πΆ FuncCat π·) |
Ref | Expression |
---|---|
fucbas | β’ (πΆ Func π·) = (Baseβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucbas.q | . . . . 5 β’ π = (πΆ FuncCat π·) | |
2 | eqid 2726 | . . . . 5 β’ (πΆ Func π·) = (πΆ Func π·) | |
3 | eqid 2726 | . . . . 5 β’ (πΆ Nat π·) = (πΆ Nat π·) | |
4 | eqid 2726 | . . . . 5 β’ (BaseβπΆ) = (BaseβπΆ) | |
5 | eqid 2726 | . . . . 5 β’ (compβπ·) = (compβπ·) | |
6 | simpl 482 | . . . . 5 β’ ((πΆ β Cat β§ π· β Cat) β πΆ β Cat) | |
7 | simpr 484 | . . . . 5 β’ ((πΆ β Cat β§ π· β Cat) β π· β Cat) | |
8 | eqid 2726 | . . . . . 6 β’ (compβπ) = (compβπ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | fuccofval 17921 | . . . . 5 β’ ((πΆ β Cat β§ π· β Cat) β (compβπ) = (π£ β ((πΆ Func π·) Γ (πΆ Func π·)), β β (πΆ Func π·) β¦ β¦(1st βπ£) / πβ¦β¦(2nd βπ£) / πβ¦(π β (π(πΆ Nat π·)β), π β (π(πΆ Nat π·)π) β¦ (π₯ β (BaseβπΆ) β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ·)((1st ββ)βπ₯))(πβπ₯)))))) |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | fucval 17920 | . . . 4 β’ ((πΆ β Cat β§ π· β Cat) β π = {β¨(Baseβndx), (πΆ Func π·)β©, β¨(Hom βndx), (πΆ Nat π·)β©, β¨(compβndx), (compβπ)β©}) |
11 | catstr 17919 | . . . 4 β’ {β¨(Baseβndx), (πΆ Func π·)β©, β¨(Hom βndx), (πΆ Nat π·)β©, β¨(compβndx), (compβπ)β©} Struct β¨1, ;15β© | |
12 | baseid 17154 | . . . 4 β’ Base = Slot (Baseβndx) | |
13 | snsstp1 4814 | . . . 4 β’ {β¨(Baseβndx), (πΆ Func π·)β©} β {β¨(Baseβndx), (πΆ Func π·)β©, β¨(Hom βndx), (πΆ Nat π·)β©, β¨(compβndx), (compβπ)β©} | |
14 | ovexd 7439 | . . . 4 β’ ((πΆ β Cat β§ π· β Cat) β (πΆ Func π·) β V) | |
15 | eqid 2726 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
16 | 10, 11, 12, 13, 14, 15 | strfv3 17145 | . . 3 β’ ((πΆ β Cat β§ π· β Cat) β (Baseβπ) = (πΆ Func π·)) |
17 | 16 | eqcomd 2732 | . 2 β’ ((πΆ β Cat β§ π· β Cat) β (πΆ Func π·) = (Baseβπ)) |
18 | base0 17156 | . . 3 β’ β = (Baseββ ) | |
19 | funcrcl 17820 | . . . . 5 β’ (π β (πΆ Func π·) β (πΆ β Cat β§ π· β Cat)) | |
20 | 19 | con3i 154 | . . . 4 β’ (Β¬ (πΆ β Cat β§ π· β Cat) β Β¬ π β (πΆ Func π·)) |
21 | 20 | eq0rdv 4399 | . . 3 β’ (Β¬ (πΆ β Cat β§ π· β Cat) β (πΆ Func π·) = β ) |
22 | fnfuc 17906 | . . . . . . 7 β’ FuncCat Fn (Cat Γ Cat) | |
23 | 22 | fndmi 6646 | . . . . . 6 β’ dom FuncCat = (Cat Γ Cat) |
24 | 23 | ndmov 7587 | . . . . 5 β’ (Β¬ (πΆ β Cat β§ π· β Cat) β (πΆ FuncCat π·) = β ) |
25 | 1, 24 | eqtrid 2778 | . . . 4 β’ (Β¬ (πΆ β Cat β§ π· β Cat) β π = β ) |
26 | 25 | fveq2d 6888 | . . 3 β’ (Β¬ (πΆ β Cat β§ π· β Cat) β (Baseβπ) = (Baseββ )) |
27 | 18, 21, 26 | 3eqtr4a 2792 | . 2 β’ (Β¬ (πΆ β Cat β§ π· β Cat) β (πΆ Func π·) = (Baseβπ)) |
28 | 17, 27 | pm2.61i 182 | 1 β’ (πΆ Func π·) = (Baseβπ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β§ wa 395 = wceq 1533 β wcel 2098 Vcvv 3468 β c0 4317 {ctp 4627 β¨cop 4629 Γ cxp 5667 βcfv 6536 (class class class)co 7404 1c1 11110 5c5 12271 ;cdc 12678 ndxcnx 17133 Basecbs 17151 Hom chom 17215 compcco 17216 Catccat 17615 Func cfunc 17811 Nat cnat 17902 FuncCat cfuc 17903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-fz 13488 df-struct 17087 df-slot 17122 df-ndx 17134 df-base 17152 df-hom 17228 df-cco 17229 df-func 17815 df-fuc 17905 |
This theorem is referenced by: fuccatid 17932 fucsect 17935 fucinv 17936 fuciso 17938 evlfcllem 18184 evlfcl 18185 curfcl 18195 uncf1 18199 uncf2 18200 curfuncf 18201 diag1cl 18205 curf2ndf 18210 yon1cl 18226 oyon1cl 18234 yonedalem21 18236 yonedalem22 18241 yonedalem3b 18242 yonedalem3 18243 yonedainv 18244 yonffthlem 18245 yoneda 18246 yoniso 18248 |
Copyright terms: Public domain | W3C validator |