| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fucbas | Structured version Visualization version GIF version | ||
| Description: The objects of the functor category are functors from 𝐶 to 𝐷. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| fucbas.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| Ref | Expression |
|---|---|
| fucbas | ⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucbas.q | . . . . 5 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (𝐶 Func 𝐷) = (𝐶 Func 𝐷) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 6 | simpl 482 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐶 ∈ Cat) | |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐷 ∈ Cat) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ (comp‘𝑄) = (comp‘𝑄) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | fuccofval 17866 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (comp‘𝑄) = (𝑣 ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)), ℎ ∈ (𝐶 Func 𝐷) ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐶 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 9 | fucval 17865 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), (𝐶 Nat 𝐷)〉, 〈(comp‘ndx), (comp‘𝑄)〉}) |
| 11 | catstr 17864 | . . . 4 ⊢ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), (𝐶 Nat 𝐷)〉, 〈(comp‘ndx), (comp‘𝑄)〉} Struct 〈1, ;15〉 | |
| 12 | baseid 17120 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
| 13 | snsstp1 4768 | . . . 4 ⊢ {〈(Base‘ndx), (𝐶 Func 𝐷)〉} ⊆ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), (𝐶 Nat 𝐷)〉, 〈(comp‘ndx), (comp‘𝑄)〉} | |
| 14 | ovexd 7381 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) ∈ V) | |
| 15 | eqid 2731 | . . . 4 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 16 | 10, 11, 12, 13, 14, 15 | strfv3 17112 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Base‘𝑄) = (𝐶 Func 𝐷)) |
| 17 | 16 | eqcomd 2737 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = (Base‘𝑄)) |
| 18 | base0 17122 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 19 | funcrcl 17767 | . . . . 5 ⊢ (𝑓 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
| 20 | 19 | con3i 154 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ¬ 𝑓 ∈ (𝐶 Func 𝐷)) |
| 21 | 20 | eq0rdv 4357 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = ∅) |
| 22 | fnfuc 17852 | . . . . . . 7 ⊢ FuncCat Fn (Cat × Cat) | |
| 23 | 22 | fndmi 6585 | . . . . . 6 ⊢ dom FuncCat = (Cat × Cat) |
| 24 | 23 | ndmov 7530 | . . . . 5 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 FuncCat 𝐷) = ∅) |
| 25 | 1, 24 | eqtrid 2778 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = ∅) |
| 26 | 25 | fveq2d 6826 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Base‘𝑄) = (Base‘∅)) |
| 27 | 18, 21, 26 | 3eqtr4a 2792 | . 2 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = (Base‘𝑄)) |
| 28 | 17, 27 | pm2.61i 182 | 1 ⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 {ctp 4580 〈cop 4582 × cxp 5614 ‘cfv 6481 (class class class)co 7346 1c1 11004 5c5 12180 ;cdc 12585 ndxcnx 17101 Basecbs 17117 Hom chom 17169 compcco 17170 Catccat 17567 Func cfunc 17758 Nat cnat 17848 FuncCat cfuc 17849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-hom 17182 df-cco 17183 df-func 17762 df-fuc 17851 |
| This theorem is referenced by: fuccatid 17876 fucsect 17879 fucinv 17880 fuciso 17882 evlfcllem 18124 evlfcl 18125 curfcl 18135 uncf1 18139 uncf2 18140 curfuncf 18141 diag1cl 18145 curf2ndf 18150 yon1cl 18166 oyon1cl 18174 yonedalem21 18176 yonedalem22 18181 yonedalem3b 18182 yonedalem3 18183 yonedainv 18184 yonffthlem 18185 yoneda 18186 yoniso 18188 xpcfucbas 49283 xpcfuchom2 49286 xpcfucco2 49287 diag1f1 49338 fucoid 49379 fucofunc 49390 postcofval 49395 postcofcl 49396 precofval 49398 precofvalALT 49399 precofcl 49401 fucoppcco 49440 fucoppc 49441 oppfdiag1 49445 oppfdiag 49447 diagciso 49570 funcsn 49572 0fucterm 49574 termfucterm 49575 cofuterm 49576 lanval2 49658 ranval2 49661 ranval3 49662 lanrcl4 49665 ranrcl4 49670 lanup 49672 ranup 49673 lmdfval2 49686 cmdfval2 49687 islmd 49696 iscmd 49697 lmddu 49698 cmddu 49699 initocmd 49700 lmdran 49702 cmdlan 49703 |
| Copyright terms: Public domain | W3C validator |