| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fucbas | Structured version Visualization version GIF version | ||
| Description: The objects of the functor category are functors from 𝐶 to 𝐷. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| fucbas.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| Ref | Expression |
|---|---|
| fucbas | ⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucbas.q | . . . . 5 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 2 | eqid 2737 | . . . . 5 ⊢ (𝐶 Func 𝐷) = (𝐶 Func 𝐷) | |
| 3 | eqid 2737 | . . . . 5 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
| 4 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | eqid 2737 | . . . . 5 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 6 | simpl 482 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐶 ∈ Cat) | |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐷 ∈ Cat) | |
| 8 | eqid 2737 | . . . . . 6 ⊢ (comp‘𝑄) = (comp‘𝑄) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | fuccofval 18007 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (comp‘𝑄) = (𝑣 ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)), ℎ ∈ (𝐶 Func 𝐷) ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐶 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 9 | fucval 18006 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), (𝐶 Nat 𝐷)〉, 〈(comp‘ndx), (comp‘𝑄)〉}) |
| 11 | catstr 18005 | . . . 4 ⊢ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), (𝐶 Nat 𝐷)〉, 〈(comp‘ndx), (comp‘𝑄)〉} Struct 〈1, ;15〉 | |
| 12 | baseid 17250 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
| 13 | snsstp1 4816 | . . . 4 ⊢ {〈(Base‘ndx), (𝐶 Func 𝐷)〉} ⊆ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), (𝐶 Nat 𝐷)〉, 〈(comp‘ndx), (comp‘𝑄)〉} | |
| 14 | ovexd 7466 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) ∈ V) | |
| 15 | eqid 2737 | . . . 4 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 16 | 10, 11, 12, 13, 14, 15 | strfv3 17241 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Base‘𝑄) = (𝐶 Func 𝐷)) |
| 17 | 16 | eqcomd 2743 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = (Base‘𝑄)) |
| 18 | base0 17252 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 19 | funcrcl 17908 | . . . . 5 ⊢ (𝑓 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
| 20 | 19 | con3i 154 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ¬ 𝑓 ∈ (𝐶 Func 𝐷)) |
| 21 | 20 | eq0rdv 4407 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = ∅) |
| 22 | fnfuc 17993 | . . . . . . 7 ⊢ FuncCat Fn (Cat × Cat) | |
| 23 | 22 | fndmi 6672 | . . . . . 6 ⊢ dom FuncCat = (Cat × Cat) |
| 24 | 23 | ndmov 7617 | . . . . 5 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 FuncCat 𝐷) = ∅) |
| 25 | 1, 24 | eqtrid 2789 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = ∅) |
| 26 | 25 | fveq2d 6910 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Base‘𝑄) = (Base‘∅)) |
| 27 | 18, 21, 26 | 3eqtr4a 2803 | . 2 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = (Base‘𝑄)) |
| 28 | 17, 27 | pm2.61i 182 | 1 ⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∅c0 4333 {ctp 4630 〈cop 4632 × cxp 5683 ‘cfv 6561 (class class class)co 7431 1c1 11156 5c5 12324 ;cdc 12733 ndxcnx 17230 Basecbs 17247 Hom chom 17308 compcco 17309 Catccat 17707 Func cfunc 17899 Nat cnat 17989 FuncCat cfuc 17990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-hom 17321 df-cco 17322 df-func 17903 df-fuc 17992 |
| This theorem is referenced by: fuccatid 18017 fucsect 18020 fucinv 18021 fuciso 18023 evlfcllem 18266 evlfcl 18267 curfcl 18277 uncf1 18281 uncf2 18282 curfuncf 18283 diag1cl 18287 curf2ndf 18292 yon1cl 18308 oyon1cl 18316 yonedalem21 18318 yonedalem22 18323 yonedalem3b 18324 yonedalem3 18325 yonedainv 18326 yonffthlem 18327 yoneda 18328 yoniso 18330 xpcfucbas 48958 xpcfuchom2 48961 xpcfucco2 48962 fucofulem2 49006 fucoid 49043 fucofunc 49054 postcofval 49059 postcofcl 49060 precofval 49062 precofvalALT 49063 precofcl 49065 |
| Copyright terms: Public domain | W3C validator |