![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fucbas | Structured version Visualization version GIF version |
Description: The objects of the functor category are functors from 𝐶 to 𝐷. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
fucbas.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
Ref | Expression |
---|---|
fucbas | ⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucbas.q | . . . . 5 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
2 | eqid 2794 | . . . . 5 ⊢ (𝐶 Func 𝐷) = (𝐶 Func 𝐷) | |
3 | eqid 2794 | . . . . 5 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
4 | eqid 2794 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
5 | eqid 2794 | . . . . 5 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
6 | simpl 483 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐶 ∈ Cat) | |
7 | simpr 485 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐷 ∈ Cat) | |
8 | eqid 2794 | . . . . . 6 ⊢ (comp‘𝑄) = (comp‘𝑄) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | fuccofval 17058 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (comp‘𝑄) = (𝑣 ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)), ℎ ∈ (𝐶 Func 𝐷) ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐶 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | fucval 17057 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), (𝐶 Nat 𝐷)〉, 〈(comp‘ndx), (comp‘𝑄)〉}) |
11 | catstr 17056 | . . . 4 ⊢ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), (𝐶 Nat 𝐷)〉, 〈(comp‘ndx), (comp‘𝑄)〉} Struct 〈1, ;15〉 | |
12 | baseid 16372 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
13 | snsstp1 4658 | . . . 4 ⊢ {〈(Base‘ndx), (𝐶 Func 𝐷)〉} ⊆ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), (𝐶 Nat 𝐷)〉, 〈(comp‘ndx), (comp‘𝑄)〉} | |
14 | ovexd 7053 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) ∈ V) | |
15 | eqid 2794 | . . . 4 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
16 | 10, 11, 12, 13, 14, 15 | strfv3 16361 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Base‘𝑄) = (𝐶 Func 𝐷)) |
17 | 16 | eqcomd 2800 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = (Base‘𝑄)) |
18 | base0 16365 | . . 3 ⊢ ∅ = (Base‘∅) | |
19 | funcrcl 16962 | . . . . 5 ⊢ (𝑓 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
20 | 19 | con3i 157 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ¬ 𝑓 ∈ (𝐶 Func 𝐷)) |
21 | 20 | eq0rdv 4279 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = ∅) |
22 | fnfuc 17044 | . . . . . . 7 ⊢ FuncCat Fn (Cat × Cat) | |
23 | fndm 6328 | . . . . . . 7 ⊢ ( FuncCat Fn (Cat × Cat) → dom FuncCat = (Cat × Cat)) | |
24 | 22, 23 | ax-mp 5 | . . . . . 6 ⊢ dom FuncCat = (Cat × Cat) |
25 | 24 | ndmov 7191 | . . . . 5 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 FuncCat 𝐷) = ∅) |
26 | 1, 25 | syl5eq 2842 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = ∅) |
27 | 26 | fveq2d 6545 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Base‘𝑄) = (Base‘∅)) |
28 | 18, 21, 27 | 3eqtr4a 2856 | . 2 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = (Base‘𝑄)) |
29 | 17, 28 | pm2.61i 183 | 1 ⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1522 ∈ wcel 2080 Vcvv 3436 ∅c0 4213 {ctp 4478 〈cop 4480 × cxp 5444 dom cdm 5446 Fn wfn 6223 ‘cfv 6228 (class class class)co 7019 1c1 10387 5c5 11545 ;cdc 11948 ndxcnx 16309 Basecbs 16312 Hom chom 16405 compcco 16406 Catccat 16764 Func cfunc 16953 Nat cnat 17040 FuncCat cfuc 17041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-addrcl 10447 ax-mulcl 10448 ax-mulrcl 10449 ax-mulcom 10450 ax-addass 10451 ax-mulass 10452 ax-distr 10453 ax-i2m1 10454 ax-1ne0 10455 ax-1rid 10456 ax-rnegex 10457 ax-rrecex 10458 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 ax-pre-ltadd 10462 ax-pre-mulgt0 10463 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-int 4785 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-riota 6980 df-ov 7022 df-oprab 7023 df-mpo 7024 df-om 7440 df-1st 7548 df-2nd 7549 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-1o 7956 df-oadd 7960 df-er 8142 df-en 8361 df-dom 8362 df-sdom 8363 df-fin 8364 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-sub 10721 df-neg 10722 df-nn 11489 df-2 11550 df-3 11551 df-4 11552 df-5 11553 df-6 11554 df-7 11555 df-8 11556 df-9 11557 df-n0 11748 df-z 11832 df-dec 11949 df-uz 12094 df-fz 12743 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-hom 16418 df-cco 16419 df-func 16957 df-fuc 17043 |
This theorem is referenced by: fuccatid 17068 fucsect 17071 fucinv 17072 fuciso 17074 evlfcllem 17300 evlfcl 17301 curfcl 17311 uncf1 17315 uncf2 17316 curfuncf 17317 diag1cl 17321 curf2ndf 17326 yon1cl 17342 oyon1cl 17350 yonedalem21 17352 yonedalem22 17357 yonedalem3b 17358 yonedalem3 17359 yonedainv 17360 yonffthlem 17361 yoneda 17362 yoniso 17364 |
Copyright terms: Public domain | W3C validator |