![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsstp3 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp3 | ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4189 | . 2 ⊢ {𝐶} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | df-tp 4636 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sseqtrri 4033 | 1 ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3961 ⊆ wss 3963 {csn 4631 {cpr 4633 {ctp 4635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-tp 4636 |
This theorem is referenced by: fr3nr 7791 rngmulr 17347 srngmulr 17358 lmodsca 17374 ipsmulr 17385 ipsip 17388 phlsca 17395 topgrptset 17410 otpsle 17425 odrngmulr 17452 odrngds 17455 prdsmulr 17506 prdsip 17508 prdsds 17511 imasds 17560 imasmulr 17565 imasip 17568 fuccofval 18015 setccofval 18136 catccofval 18158 estrccofval 18184 xpccofval 18238 mpocnfldmul 21389 cnfldds 21394 cnfldmulOLD 21403 cnflddsOLD 21407 psrmulr 21980 trkgitv 28470 rlocmulval 33256 idlsrgmulr 33515 signswch 34555 algmulr 43165 clsk1indlem1 44035 rngccofvalALTV 48114 ringccofvalALTV 48148 mndtcco 48894 |
Copyright terms: Public domain | W3C validator |