| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp3 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp3 | ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4138 | . 2 ⊢ {𝐶} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | df-tp 4590 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sseqtrri 3993 | 1 ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3909 ⊆ wss 3911 {csn 4585 {cpr 4587 {ctp 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-tp 4590 |
| This theorem is referenced by: fr3nr 7728 rngmulr 17240 srngmulr 17251 lmodsca 17267 ipsmulr 17278 ipsip 17281 phlsca 17288 topgrptset 17303 otpsle 17318 odrngmulr 17345 odrngds 17348 prdsmulr 17398 prdsip 17400 prdsds 17403 imasds 17452 imasmulr 17457 imasip 17460 fuccofval 17900 setccofval 18020 catccofval 18042 estrccofval 18066 xpccofval 18119 mpocnfldmul 21247 cnfldds 21252 cnfldmulOLD 21261 cnflddsOLD 21265 psrmulr 21827 trkgitv 28350 rlocmulval 33193 idlsrgmulr 33451 signswch 34525 algmulr 43138 clsk1indlem1 44007 rngccofvalALTV 48231 ringccofvalALTV 48265 catcofval 49190 mndtcco 49547 |
| Copyright terms: Public domain | W3C validator |