| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp3 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp3 | ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4154 | . 2 ⊢ {𝐶} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | df-tp 4606 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sseqtrri 4008 | 1 ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3924 ⊆ wss 3926 {csn 4601 {cpr 4603 {ctp 4605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-tp 4606 |
| This theorem is referenced by: fr3nr 7766 rngmulr 17315 srngmulr 17326 lmodsca 17342 ipsmulr 17353 ipsip 17356 phlsca 17363 topgrptset 17378 otpsle 17393 odrngmulr 17420 odrngds 17423 prdsmulr 17473 prdsip 17475 prdsds 17478 imasds 17527 imasmulr 17532 imasip 17535 fuccofval 17975 setccofval 18095 catccofval 18117 estrccofval 18141 xpccofval 18194 mpocnfldmul 21322 cnfldds 21327 cnfldmulOLD 21336 cnflddsOLD 21340 psrmulr 21902 trkgitv 28426 rlocmulval 33264 idlsrgmulr 33522 signswch 34593 algmulr 43200 clsk1indlem1 44069 rngccofvalALTV 48245 ringccofvalALTV 48279 catcofval 49148 mndtcco 49462 |
| Copyright terms: Public domain | W3C validator |