| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp3 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp3 | ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4145 | . 2 ⊢ {𝐶} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | df-tp 4597 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sseqtrri 3999 | 1 ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3915 ⊆ wss 3917 {csn 4592 {cpr 4594 {ctp 4596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-tp 4597 |
| This theorem is referenced by: fr3nr 7751 rngmulr 17271 srngmulr 17282 lmodsca 17298 ipsmulr 17309 ipsip 17312 phlsca 17319 topgrptset 17334 otpsle 17349 odrngmulr 17376 odrngds 17379 prdsmulr 17429 prdsip 17431 prdsds 17434 imasds 17483 imasmulr 17488 imasip 17491 fuccofval 17931 setccofval 18051 catccofval 18073 estrccofval 18097 xpccofval 18150 mpocnfldmul 21278 cnfldds 21283 cnfldmulOLD 21292 cnflddsOLD 21296 psrmulr 21858 trkgitv 28381 rlocmulval 33227 idlsrgmulr 33485 signswch 34559 algmulr 43172 clsk1indlem1 44041 rngccofvalALTV 48262 ringccofvalALTV 48296 catcofval 49221 mndtcco 49578 |
| Copyright terms: Public domain | W3C validator |