Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsstp3 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp3 | ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4107 | . 2 ⊢ {𝐶} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | df-tp 4566 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sseqtrri 3958 | 1 ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3885 ⊆ wss 3887 {csn 4561 {cpr 4563 {ctp 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-tp 4566 |
This theorem is referenced by: fr3nr 7622 rngmulr 17011 srngmulr 17022 lmodsca 17038 ipsmulr 17049 ipsip 17052 phlsca 17059 topgrptset 17074 otpsle 17089 odrngmulr 17116 odrngds 17119 prdsmulr 17170 prdsip 17172 prdsds 17175 imasds 17224 imasmulr 17229 imasip 17232 fuccofval 17676 setccofval 17797 catccofval 17819 estrccofval 17845 xpccofval 17899 cnfldmul 20603 cnfldds 20607 psrmulr 21153 trkgitv 26808 idlsrgmulr 31652 signswch 32540 algmulr 41005 clsk1indlem1 41655 rngccofvalALTV 45545 ringccofvalALTV 45608 mndtcco 46372 |
Copyright terms: Public domain | W3C validator |