| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp3 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp3 | ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4130 | . 2 ⊢ {𝐶} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | df-tp 4582 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sseqtrri 3985 | 1 ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3901 ⊆ wss 3903 {csn 4577 {cpr 4579 {ctp 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-ss 3920 df-tp 4582 |
| This theorem is referenced by: fr3nr 7708 rngmulr 17205 srngmulr 17216 lmodsca 17232 ipsmulr 17243 ipsip 17246 phlsca 17253 topgrptset 17268 otpsle 17283 odrngmulr 17310 odrngds 17313 prdsmulr 17363 prdsip 17365 prdsds 17368 imasds 17417 imasmulr 17422 imasip 17425 fuccofval 17869 setccofval 17989 catccofval 18011 estrccofval 18035 xpccofval 18088 mpocnfldmul 21268 cnfldds 21273 cnfldmulOLD 21282 cnflddsOLD 21286 psrmulr 21849 trkgitv 28392 rlocmulval 33209 idlsrgmulr 33444 signswch 34529 algmulr 43153 clsk1indlem1 44022 rngccofvalALTV 48258 ringccofvalALTV 48292 catcofval 49217 mndtcco 49574 |
| Copyright terms: Public domain | W3C validator |