| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp3 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp3 | ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4126 | . 2 ⊢ {𝐶} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | df-tp 4578 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sseqtrri 3979 | 1 ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3895 ⊆ wss 3897 {csn 4573 {cpr 4575 {ctp 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-tp 4578 |
| This theorem is referenced by: fr3nr 7705 rngmulr 17205 srngmulr 17216 lmodsca 17232 ipsmulr 17243 ipsip 17246 phlsca 17253 topgrptset 17268 otpsle 17283 odrngmulr 17310 odrngds 17313 prdsmulr 17363 prdsip 17365 prdsds 17368 imasds 17417 imasmulr 17422 imasip 17425 fuccofval 17869 setccofval 17989 catccofval 18011 estrccofval 18035 xpccofval 18088 mpocnfldmul 21298 cnfldds 21303 cnfldmulOLD 21312 cnflddsOLD 21316 psrmulr 21879 trkgitv 28425 rlocmulval 33236 idlsrgmulr 33472 signswch 34574 algmulr 43279 clsk1indlem1 44148 rngccofvalALTV 48380 ringccofvalALTV 48414 catcofval 49339 mndtcco 49696 |
| Copyright terms: Public domain | W3C validator |