MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsstp3 Structured version   Visualization version   GIF version

Theorem snsstp3 4751
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
Assertion
Ref Expression
snsstp3 {𝐶} ⊆ {𝐴, 𝐵, 𝐶}

Proof of Theorem snsstp3
StepHypRef Expression
1 ssun2 4107 . 2 {𝐶} ⊆ ({𝐴, 𝐵} ∪ {𝐶})
2 df-tp 4566 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
31, 2sseqtrri 3958 1 {𝐶} ⊆ {𝐴, 𝐵, 𝐶}
Colors of variables: wff setvar class
Syntax hints:  cun 3885  wss 3887  {csn 4561  {cpr 4563  {ctp 4565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-in 3894  df-ss 3904  df-tp 4566
This theorem is referenced by:  fr3nr  7622  rngmulr  17011  srngmulr  17022  lmodsca  17038  ipsmulr  17049  ipsip  17052  phlsca  17059  topgrptset  17074  otpsle  17089  odrngmulr  17116  odrngds  17119  prdsmulr  17170  prdsip  17172  prdsds  17175  imasds  17224  imasmulr  17229  imasip  17232  fuccofval  17676  setccofval  17797  catccofval  17819  estrccofval  17845  xpccofval  17899  cnfldmul  20603  cnfldds  20607  psrmulr  21153  trkgitv  26808  idlsrgmulr  31652  signswch  32540  algmulr  41005  clsk1indlem1  41655  rngccofvalALTV  45545  ringccofvalALTV  45608  mndtcco  46372
  Copyright terms: Public domain W3C validator