Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsstp3 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp3 | ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4103 | . 2 ⊢ {𝐶} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | df-tp 4563 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sseqtrri 3954 | 1 ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3881 ⊆ wss 3883 {csn 4558 {cpr 4560 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-tp 4563 |
This theorem is referenced by: fr3nr 7600 rngmulr 16937 srngmulr 16948 lmodsca 16964 ipsmulr 16974 ipsip 16977 phlsca 16984 topgrptset 16998 otpsle 17012 odrngmulr 17035 odrngds 17038 prdsmulr 17087 prdsip 17089 prdsds 17092 imasds 17141 imasmulr 17146 imasip 17149 fuccofval 17592 setccofval 17713 catccofval 17735 estrccofval 17761 xpccofval 17815 cnfldmul 20516 cnfldds 20520 psrmulr 21063 trkgitv 26712 idlsrgmulr 31554 signswch 32440 algmulr 40921 clsk1indlem1 41544 rngccofvalALTV 45433 ringccofvalALTV 45496 mndtcco 46258 |
Copyright terms: Public domain | W3C validator |