| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp3 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp3 | ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4152 | . 2 ⊢ {𝐶} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | df-tp 4604 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sseqtrri 4006 | 1 ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3922 ⊆ wss 3924 {csn 4599 {cpr 4601 {ctp 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-un 3929 df-ss 3941 df-tp 4604 |
| This theorem is referenced by: fr3nr 7761 rngmulr 17302 srngmulr 17313 lmodsca 17329 ipsmulr 17340 ipsip 17343 phlsca 17350 topgrptset 17365 otpsle 17380 odrngmulr 17407 odrngds 17410 prdsmulr 17460 prdsip 17462 prdsds 17465 imasds 17514 imasmulr 17519 imasip 17522 fuccofval 17962 setccofval 18082 catccofval 18104 estrccofval 18128 xpccofval 18181 mpocnfldmul 21309 cnfldds 21314 cnfldmulOLD 21323 cnflddsOLD 21327 psrmulr 21889 trkgitv 28360 rlocmulval 33201 idlsrgmulr 33459 signswch 34522 algmulr 43132 clsk1indlem1 44001 rngccofvalALTV 48139 ringccofvalALTV 48173 catcofval 49011 mndtcco 49323 |
| Copyright terms: Public domain | W3C validator |