Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsstp3 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp3 | ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4125 | . 2 ⊢ {𝐶} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | df-tp 4583 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sseqtrri 3973 | 1 ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3900 ⊆ wss 3902 {csn 4578 {cpr 4580 {ctp 4582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3444 df-un 3907 df-in 3909 df-ss 3919 df-tp 4583 |
This theorem is referenced by: fr3nr 7689 rngmulr 17109 srngmulr 17120 lmodsca 17136 ipsmulr 17147 ipsip 17150 phlsca 17157 topgrptset 17172 otpsle 17187 odrngmulr 17214 odrngds 17217 prdsmulr 17268 prdsip 17270 prdsds 17273 imasds 17322 imasmulr 17327 imasip 17330 fuccofval 17774 setccofval 17895 catccofval 17917 estrccofval 17943 xpccofval 17997 cnfldmul 20709 cnfldds 20713 psrmulr 21259 trkgitv 27097 idlsrgmulr 31947 signswch 32838 algmulr 41317 clsk1indlem1 42026 rngccofvalALTV 45961 ringccofvalALTV 46024 mndtcco 46788 |
Copyright terms: Public domain | W3C validator |