| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp3 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp3 | ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4142 | . 2 ⊢ {𝐶} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | df-tp 4594 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sseqtrri 3996 | 1 ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3912 ⊆ wss 3914 {csn 4589 {cpr 4591 {ctp 4593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-tp 4594 |
| This theorem is referenced by: fr3nr 7748 rngmulr 17264 srngmulr 17275 lmodsca 17291 ipsmulr 17302 ipsip 17305 phlsca 17312 topgrptset 17327 otpsle 17342 odrngmulr 17369 odrngds 17372 prdsmulr 17422 prdsip 17424 prdsds 17427 imasds 17476 imasmulr 17481 imasip 17484 fuccofval 17924 setccofval 18044 catccofval 18066 estrccofval 18090 xpccofval 18143 mpocnfldmul 21271 cnfldds 21276 cnfldmulOLD 21285 cnflddsOLD 21289 psrmulr 21851 trkgitv 28374 rlocmulval 33220 idlsrgmulr 33478 signswch 34552 algmulr 43165 clsk1indlem1 44034 rngccofvalALTV 48258 ringccofvalALTV 48292 catcofval 49217 mndtcco 49574 |
| Copyright terms: Public domain | W3C validator |