![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsstp3 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp3 | ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4202 | . 2 ⊢ {𝐶} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | df-tp 4653 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sseqtrri 4046 | 1 ⊢ {𝐶} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3974 ⊆ wss 3976 {csn 4648 {cpr 4650 {ctp 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-tp 4653 |
This theorem is referenced by: fr3nr 7807 rngmulr 17360 srngmulr 17371 lmodsca 17387 ipsmulr 17398 ipsip 17401 phlsca 17408 topgrptset 17423 otpsle 17438 odrngmulr 17465 odrngds 17468 prdsmulr 17519 prdsip 17521 prdsds 17524 imasds 17573 imasmulr 17578 imasip 17581 fuccofval 18028 setccofval 18149 catccofval 18171 estrccofval 18197 xpccofval 18251 mpocnfldmul 21394 cnfldds 21399 cnfldmulOLD 21408 cnflddsOLD 21412 psrmulr 21985 trkgitv 28473 rlocmulval 33241 idlsrgmulr 33500 signswch 34538 algmulr 43137 clsk1indlem1 44007 rngccofvalALTV 47993 ringccofvalALTV 48027 mndtcco 48758 |
Copyright terms: Public domain | W3C validator |