Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngccofvalALTV | Structured version Visualization version GIF version |
Description: Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
rngcbasALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcbasALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
rngcbasALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngccofvalALTV.o | ⊢ · = (comp‘𝐶) |
Ref | Expression |
---|---|
rngccofvalALTV | ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcbasALTV.c | . . . 4 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
2 | rngcbasALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | rngcbasALTV.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
4 | 1, 3, 2 | rngcbasALTV 45519 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
5 | eqid 2738 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
6 | 1, 3, 2, 5 | rngchomfvalALTV 45520 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))) |
7 | eqidd 2739 | . . . 4 ⊢ (𝜑 → (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) | |
8 | 1, 2, 4, 6, 7 | rngcvalALTV 45497 | . . 3 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
9 | 8 | fveq2d 6770 | . 2 ⊢ (𝜑 → (comp‘𝐶) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉})) |
10 | rngccofvalALTV.o | . 2 ⊢ · = (comp‘𝐶) | |
11 | 3 | fvexi 6780 | . . . . 5 ⊢ 𝐵 ∈ V |
12 | sqxpexg 7595 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (𝐵 × 𝐵) ∈ V |
14 | 13, 11 | mpoex 7909 | . . 3 ⊢ (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) ∈ V |
15 | catstr 17684 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} Struct 〈1, ;15〉 | |
16 | ccoid 17134 | . . . 4 ⊢ comp = Slot (comp‘ndx) | |
17 | snsstp3 4751 | . . . 4 ⊢ {〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} ⊆ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} | |
18 | 15, 16, 17 | strfv 16915 | . . 3 ⊢ ((𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) ∈ V → (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉})) |
19 | 14, 18 | ax-mp 5 | . 2 ⊢ (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
20 | 9, 10, 19 | 3eqtr4g 2803 | 1 ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3429 {ctp 4565 〈cop 4567 × cxp 5582 ∘ ccom 5588 ‘cfv 6426 (class class class)co 7267 ∈ cmpo 7269 1st c1st 7818 2nd c2nd 7819 1c1 10882 5c5 12041 ;cdc 12447 ndxcnx 16904 Basecbs 16922 Hom chom 16983 compcco 16984 RngHomo crngh 45421 RngCatALTVcrngcALTV 45494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-fz 13250 df-struct 16858 df-slot 16893 df-ndx 16905 df-base 16923 df-hom 16996 df-cco 16997 df-rngcALTV 45496 |
This theorem is referenced by: rngccoALTV 45524 |
Copyright terms: Public domain | W3C validator |