Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngccofvalALTV | Structured version Visualization version GIF version |
Description: Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
rngcbasALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcbasALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
rngcbasALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngccofvalALTV.o | ⊢ · = (comp‘𝐶) |
Ref | Expression |
---|---|
rngccofvalALTV | ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcbasALTV.c | . . . 4 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
2 | rngcbasALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | rngcbasALTV.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
4 | 1, 3, 2 | rngcbasALTV 45785 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
5 | eqid 2736 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
6 | 1, 3, 2, 5 | rngchomfvalALTV 45786 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))) |
7 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) | |
8 | 1, 2, 4, 6, 7 | rngcvalALTV 45763 | . . 3 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
9 | 8 | fveq2d 6808 | . 2 ⊢ (𝜑 → (comp‘𝐶) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉})) |
10 | rngccofvalALTV.o | . 2 ⊢ · = (comp‘𝐶) | |
11 | 3 | fvexi 6818 | . . . . 5 ⊢ 𝐵 ∈ V |
12 | sqxpexg 7637 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (𝐵 × 𝐵) ∈ V |
14 | 13, 11 | mpoex 7952 | . . 3 ⊢ (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) ∈ V |
15 | catstr 17723 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} Struct 〈1, ;15〉 | |
16 | ccoid 17173 | . . . 4 ⊢ comp = Slot (comp‘ndx) | |
17 | snsstp3 4757 | . . . 4 ⊢ {〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} ⊆ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} | |
18 | 15, 16, 17 | strfv 16954 | . . 3 ⊢ ((𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) ∈ V → (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉})) |
19 | 14, 18 | ax-mp 5 | . 2 ⊢ (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
20 | 9, 10, 19 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3437 {ctp 4569 〈cop 4571 × cxp 5598 ∘ ccom 5604 ‘cfv 6458 (class class class)co 7307 ∈ cmpo 7309 1st c1st 7861 2nd c2nd 7862 1c1 10922 5c5 12081 ;cdc 12487 ndxcnx 16943 Basecbs 16961 Hom chom 17022 compcco 17023 RngHomo crngh 45687 RngCatALTVcrngcALTV 45760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-fz 13290 df-struct 16897 df-slot 16932 df-ndx 16944 df-base 16962 df-hom 17035 df-cco 17036 df-rngcALTV 45762 |
This theorem is referenced by: rngccoALTV 45790 |
Copyright terms: Public domain | W3C validator |