MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catccofval Structured version   Visualization version   GIF version

Theorem catccofval 17135
Description: Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catcbas.c 𝐶 = (CatCat‘𝑈)
catcbas.b 𝐵 = (Base‘𝐶)
catcbas.u (𝜑𝑈𝑉)
catcco.o · = (comp‘𝐶)
Assertion
Ref Expression
catccofval (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))
Distinct variable groups:   𝑧,𝑣,𝐵   𝑓,𝑔,𝑣,𝑧,𝜑   𝑣,𝑈,𝑧
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝐶(𝑧,𝑣,𝑓,𝑔)   · (𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝑉(𝑧,𝑣,𝑓,𝑔)

Proof of Theorem catccofval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcbas.c . . . 4 𝐶 = (CatCat‘𝑈)
2 catcbas.u . . . 4 (𝜑𝑈𝑉)
3 catcbas.b . . . . 5 𝐵 = (Base‘𝐶)
41, 3, 2catcbas 17132 . . . 4 (𝜑𝐵 = (𝑈 ∩ Cat))
5 eqid 2778 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
61, 3, 2, 5catchomfval 17133 . . . 4 (𝜑 → (Hom ‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))
7 eqidd 2779 . . . 4 (𝜑 → (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))
81, 2, 4, 6, 7catcval 17131 . . 3 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩})
98fveq2d 6450 . 2 (𝜑 → (comp‘𝐶) = (comp‘{⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩}))
10 catcco.o . 2 · = (comp‘𝐶)
113fvexi 6460 . . . . 5 𝐵 ∈ V
1211, 11xpex 7240 . . . 4 (𝐵 × 𝐵) ∈ V
1312, 11mpt2ex 7527 . . 3 (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))) ∈ V
14 catstr 17002 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩} Struct ⟨1, 15⟩
15 ccoid 16463 . . . 4 comp = Slot (comp‘ndx)
16 snsstp3 4580 . . . 4 {⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩}
1714, 15, 16strfv 16303 . . 3 ((𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))) ∈ V → (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))) = (comp‘{⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩}))
1813, 17ax-mp 5 . 2 (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))) = (comp‘{⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩})
199, 10, 183eqtr4g 2839 1 (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  Vcvv 3398  {ctp 4402  cop 4404   × cxp 5353  cfv 6135  (class class class)co 6922  cmpt2 6924  2nd c2nd 7444  1c1 10273  5c5 11433  cdc 11845  ndxcnx 16252  Basecbs 16255  Hom chom 16349  compcco 16350   Func cfunc 16899  func ccofu 16901  CatCatccatc 17129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-hom 16362  df-cco 16363  df-catc 17130
This theorem is referenced by:  catcco  17136
  Copyright terms: Public domain W3C validator