Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringccofvalALTV | Structured version Visualization version GIF version |
Description: Composition in the category of rings. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringcbasALTV.c | ⊢ 𝐶 = (RingCatALTV‘𝑈) |
ringcbasALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
ringcbasALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringccoALTV.o | ⊢ · = (comp‘𝐶) |
Ref | Expression |
---|---|
ringccofvalALTV | ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcbasALTV.c | . . . 4 ⊢ 𝐶 = (RingCatALTV‘𝑈) | |
2 | ringcbasALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | ringcbasALTV.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
4 | 1, 3, 2 | ringcbasALTV 45556 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
5 | eqid 2739 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
6 | 1, 3, 2, 5 | ringchomfvalALTV 45557 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RingHom 𝑦))) |
7 | eqidd 2740 | . . . 4 ⊢ (𝜑 → (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) | |
8 | 1, 2, 4, 6, 7 | ringcvalALTV 45517 | . . 3 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
9 | 8 | fveq2d 6772 | . 2 ⊢ (𝜑 → (comp‘𝐶) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉})) |
10 | ringccoALTV.o | . 2 ⊢ · = (comp‘𝐶) | |
11 | 3 | fvexi 6782 | . . . . 5 ⊢ 𝐵 ∈ V |
12 | sqxpexg 7596 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ (𝐵 × 𝐵) ∈ V |
14 | 13, 11 | mpoex 7906 | . . 3 ⊢ (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) ∈ V |
15 | catstr 17655 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} Struct 〈1, ;15〉 | |
16 | ccoid 17105 | . . . 4 ⊢ comp = Slot (comp‘ndx) | |
17 | snsstp3 4756 | . . . 4 ⊢ {〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} ⊆ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} | |
18 | 15, 16, 17 | strfv 16886 | . . 3 ⊢ ((𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) ∈ V → (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉})) |
19 | 14, 18 | ax-mp 5 | . 2 ⊢ (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
20 | 9, 10, 19 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 {ctp 4570 〈cop 4572 × cxp 5586 ∘ ccom 5592 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 1st c1st 7815 2nd c2nd 7816 1c1 10856 5c5 12014 ;cdc 12419 ndxcnx 16875 Basecbs 16893 Hom chom 16954 compcco 16955 RingHom crh 19937 RingCatALTVcringcALTV 45514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-hom 16967 df-cco 16968 df-ringcALTV 45516 |
This theorem is referenced by: ringccoALTV 45561 |
Copyright terms: Public domain | W3C validator |