Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipsip | Structured version Visualization version GIF version |
Description: The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
ipspart.a | ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) |
Ref | Expression |
---|---|
ipsip | ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (·𝑖‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipspart.a | . . 3 ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) | |
2 | 1 | ipsstr 17148 | . 2 ⊢ 𝐴 Struct 〈1, 8〉 |
3 | ipid 17143 | . 2 ⊢ ·𝑖 = Slot (·𝑖‘ndx) | |
4 | snsstp3 4773 | . . 3 ⊢ {〈(·𝑖‘ndx), 𝐼〉} ⊆ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} | |
5 | ssun2 4128 | . . . 4 ⊢ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} ⊆ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) | |
6 | 5, 1 | sseqtrri 3976 | . . 3 ⊢ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} ⊆ 𝐴 |
7 | 4, 6 | sstri 3948 | . 2 ⊢ {〈(·𝑖‘ndx), 𝐼〉} ⊆ 𝐴 |
8 | 2, 3, 7 | strfv 17007 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (·𝑖‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∪ cun 3903 {csn 4581 {ctp 4585 〈cop 4587 ‘cfv 6488 1c1 10982 8c8 12144 ndxcnx 16996 Basecbs 17014 +gcplusg 17064 .rcmulr 17065 Scalarcsca 17067 ·𝑠 cvsca 17068 ·𝑖cip 17069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-tp 4586 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-fin 8817 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-nn 12084 df-2 12146 df-3 12147 df-4 12148 df-5 12149 df-6 12150 df-7 12151 df-8 12152 df-n0 12344 df-z 12430 df-uz 12693 df-fz 13350 df-struct 16950 df-slot 16985 df-ndx 16997 df-base 17015 df-plusg 17077 df-mulr 17078 df-sca 17080 df-vsca 17081 df-ip 17082 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |