Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrgmulr Structured version   Visualization version   GIF version

Theorem idlsrgmulr 31158
Description: Multiplicative operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
idlsrgmulr.1 𝑆 = (IDLsrg‘𝑅)
idlsrgmulr.2 𝐵 = (LIdeal‘𝑅)
idlsrgmulr.3 𝐺 = (mulGrp‘𝑅)
idlsrgmulr.4 = (LSSum‘𝐺)
Assertion
Ref Expression
idlsrgmulr (𝑅𝑉 → (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗))) = (.r𝑆))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝑆(𝑖,𝑗)   (𝑖,𝑗)   𝐺(𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem idlsrgmulr
StepHypRef Expression
1 idlsrgmulr.2 . . . . 5 𝐵 = (LIdeal‘𝑅)
21fvexi 6665 . . . 4 𝐵 ∈ V
32, 2mpoex 7775 . . 3 (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗))) ∈ V
4 eqid 2759 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐵 ↦ {𝑗𝐵 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵𝑖𝑗)}⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐵 ↦ {𝑗𝐵 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵𝑖𝑗)}⟩})
54idlsrgstr 31153 . . . 4 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐵 ↦ {𝑗𝐵 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵𝑖𝑗)}⟩}) Struct ⟨1, 10⟩
6 mulrid 16659 . . . 4 .r = Slot (.r‘ndx)
7 snsstp3 4701 . . . . 5 {⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩}
8 ssun1 4073 . . . . 5 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐵 ↦ {𝑗𝐵 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵𝑖𝑗)}⟩})
97, 8sstri 3897 . . . 4 {⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐵 ↦ {𝑗𝐵 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵𝑖𝑗)}⟩})
105, 6, 9strfv 16574 . . 3 ((𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗))) ∈ V → (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗))) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐵 ↦ {𝑗𝐵 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵𝑖𝑗)}⟩})))
113, 10ax-mp 5 . 2 (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗))) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐵 ↦ {𝑗𝐵 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵𝑖𝑗)}⟩}))
12 idlsrgmulr.1 . . . 4 𝑆 = (IDLsrg‘𝑅)
13 eqid 2759 . . . . 5 (LSSum‘𝑅) = (LSSum‘𝑅)
14 idlsrgmulr.3 . . . . 5 𝐺 = (mulGrp‘𝑅)
15 idlsrgmulr.4 . . . . 5 = (LSSum‘𝐺)
161, 13, 14, 15idlsrgval 31154 . . . 4 (𝑅𝑉 → (IDLsrg‘𝑅) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐵 ↦ {𝑗𝐵 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵𝑖𝑗)}⟩}))
1712, 16syl5eq 2806 . . 3 (𝑅𝑉𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐵 ↦ {𝑗𝐵 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵𝑖𝑗)}⟩}))
1817fveq2d 6655 . 2 (𝑅𝑉 → (.r𝑆) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐵 ↦ {𝑗𝐵 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐵𝑖𝑗)}⟩})))
1911, 18eqtr4id 2813 1 (𝑅𝑉 → (𝑖𝐵, 𝑗𝐵 ↦ ((RSpan‘𝑅)‘(𝑖 𝑗))) = (.r𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400   = wceq 1539  wcel 2112  {crab 3072  Vcvv 3407  cun 3852  wss 3854  {csn 4515  {cpr 4517  {ctp 4519  cop 4521  {copab 5087  cmpt 5105  ran crn 5518  cfv 6328  (class class class)co 7143  cmpo 7145  0cc0 10560  1c1 10561  cdc 12122  ndxcnx 16523  Basecbs 16526  +gcplusg 16608  .rcmulr 16609  TopSetcts 16614  lecple 16615  LSSumclsm 18811  mulGrpcmgp 19292  LIdealclidl 19995  RSpancrsp 19996  IDLsrgcidlsrg 31151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-7 11727  df-8 11728  df-9 11729  df-n0 11920  df-z 12006  df-dec 12123  df-uz 12268  df-fz 12925  df-struct 16528  df-ndx 16529  df-slot 16530  df-base 16532  df-plusg 16621  df-mulr 16622  df-tset 16627  df-ple 16628  df-idlsrg 31152
This theorem is referenced by:  idlsrgmulrval  31160
  Copyright terms: Public domain W3C validator