MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmulr Structured version   Visualization version   GIF version

Theorem prdsmulr 17401
Description: Multiplication in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (πœ‘ β†’ 𝑆 ∈ 𝑉)
prdsbas.r (πœ‘ β†’ 𝑅 ∈ π‘Š)
prdsbas.b 𝐡 = (Baseβ€˜π‘ƒ)
prdsbas.i (πœ‘ β†’ dom 𝑅 = 𝐼)
prdsmulr.t Β· = (.rβ€˜π‘ƒ)
Assertion
Ref Expression
prdsmulr (πœ‘ β†’ Β· = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))
Distinct variable groups:   𝑓,𝑔,π‘₯,𝐡   πœ‘,𝑓,𝑔,π‘₯   𝑓,𝐼,𝑔,π‘₯   𝑃,𝑓,𝑔,π‘₯   𝑅,𝑓,𝑔,π‘₯   𝑆,𝑓,𝑔,π‘₯
Allowed substitution hints:   Β· (π‘₯,𝑓,𝑔)   𝑉(π‘₯,𝑓,𝑔)   π‘Š(π‘₯,𝑓,𝑔)

Proof of Theorem prdsmulr
Dummy variables π‘Ž 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3 𝑃 = (𝑆Xs𝑅)
2 eqid 2732 . . 3 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
3 prdsbas.i . . 3 (πœ‘ β†’ dom 𝑅 = 𝐼)
4 prdsbas.s . . . 4 (πœ‘ β†’ 𝑆 ∈ 𝑉)
5 prdsbas.r . . . 4 (πœ‘ β†’ 𝑅 ∈ π‘Š)
6 prdsbas.b . . . 4 𝐡 = (Baseβ€˜π‘ƒ)
71, 4, 5, 6, 3prdsbas 17399 . . 3 (πœ‘ β†’ 𝐡 = Xπ‘₯ ∈ 𝐼 (Baseβ€˜(π‘…β€˜π‘₯)))
8 eqid 2732 . . . 4 (+gβ€˜π‘ƒ) = (+gβ€˜π‘ƒ)
91, 4, 5, 6, 3, 8prdsplusg 17400 . . 3 (πœ‘ β†’ (+gβ€˜π‘ƒ) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(+gβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))
10 eqidd 2733 . . 3 (πœ‘ β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))
11 eqidd 2733 . . 3 (πœ‘ β†’ (𝑓 ∈ (Baseβ€˜π‘†), 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ (𝑓( ·𝑠 β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))) = (𝑓 ∈ (Baseβ€˜π‘†), 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ (𝑓( ·𝑠 β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))
12 eqidd 2733 . . 3 (πœ‘ β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))))
13 eqidd 2733 . . 3 (πœ‘ β†’ (∏tβ€˜(TopOpen ∘ 𝑅)) = (∏tβ€˜(TopOpen ∘ 𝑅)))
14 eqidd 2733 . . 3 (πœ‘ β†’ {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))} = {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))})
15 eqidd 2733 . . 3 (πœ‘ β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < )) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < )))
16 eqidd 2733 . . 3 (πœ‘ β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))
17 eqidd 2733 . . 3 (πœ‘ β†’ (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯))))) = (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯))))))
181, 2, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 4, 5prdsval 17397 . 2 (πœ‘ β†’ 𝑃 = (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), (𝑓 ∈ (Baseβ€˜π‘†), 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ (𝑓( ·𝑠 β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βˆͺ ({⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ 𝑅))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βˆͺ {⟨(Hom β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩})))
19 prdsmulr.t . 2 Β· = (.rβ€˜π‘ƒ)
20 mulridx 17235 . 2 .r = Slot (.rβ€˜ndx)
21 ovssunirn 7441 . . . . . . . . . . 11 ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)) βŠ† βˆͺ ran (.rβ€˜(π‘…β€˜π‘₯))
2220strfvss 17116 . . . . . . . . . . . . 13 (.rβ€˜(π‘…β€˜π‘₯)) βŠ† βˆͺ ran (π‘…β€˜π‘₯)
23 fvssunirn 6921 . . . . . . . . . . . . . 14 (π‘…β€˜π‘₯) βŠ† βˆͺ ran 𝑅
24 rnss 5936 . . . . . . . . . . . . . 14 ((π‘…β€˜π‘₯) βŠ† βˆͺ ran 𝑅 β†’ ran (π‘…β€˜π‘₯) βŠ† ran βˆͺ ran 𝑅)
25 uniss 4915 . . . . . . . . . . . . . 14 (ran (π‘…β€˜π‘₯) βŠ† ran βˆͺ ran 𝑅 β†’ βˆͺ ran (π‘…β€˜π‘₯) βŠ† βˆͺ ran βˆͺ ran 𝑅)
2623, 24, 25mp2b 10 . . . . . . . . . . . . 13 βˆͺ ran (π‘…β€˜π‘₯) βŠ† βˆͺ ran βˆͺ ran 𝑅
2722, 26sstri 3990 . . . . . . . . . . . 12 (.rβ€˜(π‘…β€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran 𝑅
28 rnss 5936 . . . . . . . . . . . 12 ((.rβ€˜(π‘…β€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran 𝑅 β†’ ran (.rβ€˜(π‘…β€˜π‘₯)) βŠ† ran βˆͺ ran βˆͺ ran 𝑅)
29 uniss 4915 . . . . . . . . . . . 12 (ran (.rβ€˜(π‘…β€˜π‘₯)) βŠ† ran βˆͺ ran βˆͺ ran 𝑅 β†’ βˆͺ ran (.rβ€˜(π‘…β€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran βˆͺ ran 𝑅)
3027, 28, 29mp2b 10 . . . . . . . . . . 11 βˆͺ ran (.rβ€˜(π‘…β€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran βˆͺ ran 𝑅
3121, 30sstri 3990 . . . . . . . . . 10 ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran βˆͺ ran 𝑅
32 ovex 7438 . . . . . . . . . . 11 ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)) ∈ V
3332elpw 4605 . . . . . . . . . 10 (((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)) ∈ 𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ↔ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran βˆͺ ran 𝑅)
3431, 33mpbir 230 . . . . . . . . 9 ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)) ∈ 𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅
3534a1i 11 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐼) β†’ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)) ∈ 𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅)
3635fmpttd 7111 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))):πΌβŸΆπ’« βˆͺ ran βˆͺ ran βˆͺ ran 𝑅)
37 rnexg 7891 . . . . . . . . . . . 12 (𝑅 ∈ π‘Š β†’ ran 𝑅 ∈ V)
38 uniexg 7726 . . . . . . . . . . . 12 (ran 𝑅 ∈ V β†’ βˆͺ ran 𝑅 ∈ V)
395, 37, 383syl 18 . . . . . . . . . . 11 (πœ‘ β†’ βˆͺ ran 𝑅 ∈ V)
40 rnexg 7891 . . . . . . . . . . 11 (βˆͺ ran 𝑅 ∈ V β†’ ran βˆͺ ran 𝑅 ∈ V)
41 uniexg 7726 . . . . . . . . . . 11 (ran βˆͺ ran 𝑅 ∈ V β†’ βˆͺ ran βˆͺ ran 𝑅 ∈ V)
4239, 40, 413syl 18 . . . . . . . . . 10 (πœ‘ β†’ βˆͺ ran βˆͺ ran 𝑅 ∈ V)
43 rnexg 7891 . . . . . . . . . 10 (βˆͺ ran βˆͺ ran 𝑅 ∈ V β†’ ran βˆͺ ran βˆͺ ran 𝑅 ∈ V)
44 uniexg 7726 . . . . . . . . . 10 (ran βˆͺ ran βˆͺ ran 𝑅 ∈ V β†’ βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ∈ V)
4542, 43, 443syl 18 . . . . . . . . 9 (πœ‘ β†’ βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ∈ V)
4645pwexd 5376 . . . . . . . 8 (πœ‘ β†’ 𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ∈ V)
475dmexd 7892 . . . . . . . . 9 (πœ‘ β†’ dom 𝑅 ∈ V)
483, 47eqeltrrd 2834 . . . . . . . 8 (πœ‘ β†’ 𝐼 ∈ V)
4946, 48elmapd 8830 . . . . . . 7 (πœ‘ β†’ ((π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) ∈ (𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ↑m 𝐼) ↔ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))):πΌβŸΆπ’« βˆͺ ran βˆͺ ran βˆͺ ran 𝑅))
5036, 49mpbird 256 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) ∈ (𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ↑m 𝐼))
5150ralrimivw 3150 . . . . 5 (πœ‘ β†’ βˆ€π‘” ∈ 𝐡 (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) ∈ (𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ↑m 𝐼))
5251ralrimivw 3150 . . . 4 (πœ‘ β†’ βˆ€π‘“ ∈ 𝐡 βˆ€π‘” ∈ 𝐡 (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) ∈ (𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ↑m 𝐼))
53 eqid 2732 . . . . 5 (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))
5453fmpo 8050 . . . 4 (βˆ€π‘“ ∈ 𝐡 βˆ€π‘” ∈ 𝐡 (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) ∈ (𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ↑m 𝐼) ↔ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))):(𝐡 Γ— 𝐡)⟢(𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ↑m 𝐼))
5552, 54sylib 217 . . 3 (πœ‘ β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))):(𝐡 Γ— 𝐡)⟢(𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ↑m 𝐼))
566fvexi 6902 . . . . 5 𝐡 ∈ V
5756, 56xpex 7736 . . . 4 (𝐡 Γ— 𝐡) ∈ V
58 ovex 7438 . . . 4 (𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ↑m 𝐼) ∈ V
59 fex2 7920 . . . 4 (((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))):(𝐡 Γ— 𝐡)⟢(𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ↑m 𝐼) ∧ (𝐡 Γ— 𝐡) ∈ V ∧ (𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ↑m 𝐼) ∈ V) β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))) ∈ V)
6057, 58, 59mp3an23 1453 . . 3 ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))):(𝐡 Γ— 𝐡)⟢(𝒫 βˆͺ ran βˆͺ ran βˆͺ ran 𝑅 ↑m 𝐼) β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))) ∈ V)
6155, 60syl 17 . 2 (πœ‘ β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))) ∈ V)
62 snsstp3 4820 . . . 4 {⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βŠ† {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩}
63 ssun1 4171 . . . 4 {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βŠ† ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), (𝑓 ∈ (Baseβ€˜π‘†), 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ (𝑓( ·𝑠 β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))⟩})
6462, 63sstri 3990 . . 3 {⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βŠ† ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), (𝑓 ∈ (Baseβ€˜π‘†), 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ (𝑓( ·𝑠 β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))⟩})
65 ssun1 4171 . . 3 ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), (𝑓 ∈ (Baseβ€˜π‘†), 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ (𝑓( ·𝑠 β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βŠ† (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), (𝑓 ∈ (Baseβ€˜π‘†), 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ (𝑓( ·𝑠 β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βˆͺ ({⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ 𝑅))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βˆͺ {⟨(Hom β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩}))
6664, 65sstri 3990 . 2 {⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βŠ† (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), (𝑓 ∈ (Baseβ€˜π‘†), 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ (𝑓( ·𝑠 β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βˆͺ ({⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ 𝑅))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βˆͺ {⟨(Hom β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩}))
6718, 19, 20, 61, 66prdsbaslem 17395 1 (πœ‘ β†’ Β· = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   βˆͺ cun 3945   βŠ† wss 3947  π’« cpw 4601  {csn 4627  {cpr 4629  {ctp 4631  βŸ¨cop 4633  βˆͺ cuni 4907   class class class wbr 5147  {copab 5209   ↦ cmpt 5230   Γ— cxp 5673  dom cdm 5675  ran crn 5676   ∘ ccom 5679  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  1st c1st 7969  2nd c2nd 7970   ↑m cmap 8816  Xcixp 8887  supcsup 9431  0cc0 11106  β„*cxr 11243   < clt 11244  ndxcnx 17122  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197  Β·π‘–cip 17198  TopSetcts 17199  lecple 17200  distcds 17202  Hom chom 17204  compcco 17205  TopOpenctopn 17363  βˆtcpt 17380   Ξ£g cgsu 17382  Xscprds 17387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-prds 17389
This theorem is referenced by:  prdsvsca  17402  prdsle  17404  prdsds  17406  prdstset  17408  prdshom  17409  prdsco  17410  prdsmulrval  17417  prdsmgp  20125
  Copyright terms: Public domain W3C validator