Step | Hyp | Ref
| Expression |
1 | | imasbas.u |
. . 3
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
2 | | imasbas.v |
. . 3
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
3 | | eqid 2738 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
4 | | eqid 2738 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
5 | | eqid 2738 |
. . 3
⊢
(Scalar‘𝑅) =
(Scalar‘𝑅) |
6 | | eqid 2738 |
. . 3
⊢
(Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅)) |
7 | | eqid 2738 |
. . 3
⊢ (
·𝑠 ‘𝑅) = ( ·𝑠
‘𝑅) |
8 | | imasip.i |
. . 3
⊢ , =
(·𝑖‘𝑅) |
9 | | eqid 2738 |
. . 3
⊢
(TopOpen‘𝑅) =
(TopOpen‘𝑅) |
10 | | eqid 2738 |
. . 3
⊢
(dist‘𝑅) =
(dist‘𝑅) |
11 | | eqid 2738 |
. . 3
⊢
(le‘𝑅) =
(le‘𝑅) |
12 | | imasbas.f |
. . . 4
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
13 | | imasbas.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
14 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑈) = (+g‘𝑈) |
15 | 1, 2, 12, 13, 3, 14 | imasplusg 17145 |
. . 3
⊢ (𝜑 → (+g‘𝑈) = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(+g‘𝑅)𝑞))〉}) |
16 | | eqid 2738 |
. . . 4
⊢
(.r‘𝑈) = (.r‘𝑈) |
17 | 1, 2, 12, 13, 4, 16 | imasmulr 17146 |
. . 3
⊢ (𝜑 → (.r‘𝑈) = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝(.r‘𝑅)𝑞))〉}) |
18 | | eqid 2738 |
. . . 4
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
19 | 1, 2, 12, 13, 5, 6, 7, 18 | imasvsca 17148 |
. . 3
⊢ (𝜑 → (
·𝑠 ‘𝑈) = ∪
𝑞 ∈ 𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝( ·𝑠
‘𝑅)𝑞)))) |
20 | | eqidd 2739 |
. . 3
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉} = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}) |
21 | | eqidd 2739 |
. . 3
⊢ (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) = ((TopOpen‘𝑅) qTop 𝐹)) |
22 | | eqid 2738 |
. . . 4
⊢
(dist‘𝑈) =
(dist‘𝑈) |
23 | 1, 2, 12, 13, 10, 22 | imasds 17141 |
. . 3
⊢ (𝜑 → (dist‘𝑈) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ inf(∪ 𝑢 ∈ ℕ ran (𝑧 ∈ {𝑤 ∈ ((𝑉 × 𝑉) ↑m (1...𝑢)) ∣ ((𝐹‘(1st ‘(𝑤‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑤‘𝑢))) = 𝑦 ∧ ∀𝑣 ∈ (1...(𝑢 − 1))(𝐹‘(2nd ‘(𝑤‘𝑣))) = (𝐹‘(1st ‘(𝑤‘(𝑣 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑅) ∘
𝑧))), ℝ*,
< ))) |
24 | | eqidd 2739 |
. . 3
⊢ (𝜑 → ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹) = ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)) |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 15, 17, 19, 20, 21, 23, 24, 12, 13 | imasval 17139 |
. 2
⊢ (𝜑 → 𝑈 = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), (+g‘𝑈)〉, 〈(.r‘ndx),
(.r‘𝑈)〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑅)〉,
〈( ·𝑠 ‘ndx), (
·𝑠 ‘𝑈)〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)〉, 〈(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)〉, 〈(dist‘ndx),
(dist‘𝑈)〉})) |
26 | | eqid 2738 |
. . 3
⊢
(({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑈)〉, 〈(.r‘ndx),
(.r‘𝑈)〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑅)〉,
〈( ·𝑠 ‘ndx), (
·𝑠 ‘𝑈)〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)〉, 〈(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)〉, 〈(dist‘ndx),
(dist‘𝑈)〉}) =
(({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑈)〉, 〈(.r‘ndx),
(.r‘𝑈)〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑅)〉,
〈( ·𝑠 ‘ndx), (
·𝑠 ‘𝑈)〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)〉, 〈(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)〉, 〈(dist‘ndx),
(dist‘𝑈)〉}) |
27 | 26 | imasvalstr 17079 |
. 2
⊢
(({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑈)〉, 〈(.r‘ndx),
(.r‘𝑈)〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑅)〉,
〈( ·𝑠 ‘ndx), (
·𝑠 ‘𝑈)〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)〉, 〈(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)〉, 〈(dist‘ndx),
(dist‘𝑈)〉})
Struct 〈1, ;12〉 |
28 | | ipid 16967 |
. 2
⊢
·𝑖 = Slot
(·𝑖‘ndx) |
29 | | snsstp3 4748 |
. . . 4
⊢
{〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉} ⊆
{〈(Scalar‘ndx), (Scalar‘𝑅)〉, 〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑈)〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉} |
30 | | ssun2 4103 |
. . . 4
⊢
{〈(Scalar‘ndx), (Scalar‘𝑅)〉, 〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑈)〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉} ⊆
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑈)〉, 〈(.r‘ndx),
(.r‘𝑈)〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑅)〉,
〈( ·𝑠 ‘ndx), (
·𝑠 ‘𝑈)〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉}) |
31 | 29, 30 | sstri 3926 |
. . 3
⊢
{〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉} ⊆
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑈)〉, 〈(.r‘ndx),
(.r‘𝑈)〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑅)〉,
〈( ·𝑠 ‘ndx), (
·𝑠 ‘𝑈)〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉}) |
32 | | ssun1 4102 |
. . 3
⊢
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑈)〉, 〈(.r‘ndx),
(.r‘𝑈)〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑅)〉,
〈( ·𝑠 ‘ndx), (
·𝑠 ‘𝑈)〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉}) ⊆
(({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑈)〉, 〈(.r‘ndx),
(.r‘𝑈)〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑅)〉,
〈( ·𝑠 ‘ndx), (
·𝑠 ‘𝑈)〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)〉, 〈(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)〉, 〈(dist‘ndx),
(dist‘𝑈)〉}) |
33 | 31, 32 | sstri 3926 |
. 2
⊢
{〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉} ⊆
(({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑈)〉, 〈(.r‘ndx),
(.r‘𝑈)〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑅)〉,
〈( ·𝑠 ‘ndx), (
·𝑠 ‘𝑈)〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)〉, 〈(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ ◡𝐹)〉, 〈(dist‘ndx),
(dist‘𝑈)〉}) |
34 | | fvex 6769 |
. . . 4
⊢
(Base‘𝑅)
∈ V |
35 | 2, 34 | eqeltrdi 2847 |
. . 3
⊢ (𝜑 → 𝑉 ∈ V) |
36 | | snex 5349 |
. . . . . 6
⊢
{〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉} ∈ V |
37 | 36 | rgenw 3075 |
. . . . 5
⊢
∀𝑞 ∈
𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉} ∈ V |
38 | | iunexg 7779 |
. . . . 5
⊢ ((𝑉 ∈ V ∧ ∀𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉} ∈ V) → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉} ∈ V) |
39 | 35, 37, 38 | sylancl 585 |
. . . 4
⊢ (𝜑 → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉} ∈ V) |
40 | 39 | ralrimivw 3108 |
. . 3
⊢ (𝜑 → ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉} ∈ V) |
41 | | iunexg 7779 |
. . 3
⊢ ((𝑉 ∈ V ∧ ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉} ∈ V) → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉} ∈ V) |
42 | 35, 40, 41 | syl2anc 583 |
. 2
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉} ∈ V) |
43 | | imasip.w |
. 2
⊢ 𝐼 =
(·𝑖‘𝑈) |
44 | 25, 27, 28, 33, 42, 43 | strfv3 16834 |
1
⊢ (𝜑 → 𝐼 = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}) |