| Step | Hyp | Ref
| Expression |
| 1 | | xpccofval.t |
. . . 4
⊢ 𝑇 = (𝐶 ×c 𝐷) |
| 2 | | eqid 2737 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 3 | | eqid 2737 |
. . . 4
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 4 | | eqid 2737 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 5 | | eqid 2737 |
. . . 4
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 6 | | xpccofval.o1 |
. . . 4
⊢ · =
(comp‘𝐶) |
| 7 | | xpccofval.o2 |
. . . 4
⊢ ∙ =
(comp‘𝐷) |
| 8 | | simpl 482 |
. . . 4
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐶 ∈ V) |
| 9 | | simpr 484 |
. . . 4
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐷 ∈ V) |
| 10 | | xpccofval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑇) |
| 11 | 1, 2, 3 | xpcbas 18223 |
. . . . . 6
⊢
((Base‘𝐶)
× (Base‘𝐷)) =
(Base‘𝑇) |
| 12 | 10, 11 | eqtr4i 2768 |
. . . . 5
⊢ 𝐵 = ((Base‘𝐶) × (Base‘𝐷)) |
| 13 | 12 | a1i 11 |
. . . 4
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐵 = ((Base‘𝐶) × (Base‘𝐷))) |
| 14 | | xpccofval.k |
. . . . . 6
⊢ 𝐾 = (Hom ‘𝑇) |
| 15 | 1, 10, 4, 5, 14 | xpchomfval 18224 |
. . . . 5
⊢ 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣)))) |
| 16 | 15 | a1i 11 |
. . . 4
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)(Hom ‘𝐶)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝐷)(2nd ‘𝑣))))) |
| 17 | | eqidd 2738 |
. . . 4
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉 ·
(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉 ∙
(2nd ‘𝑦))(2nd ‘𝑓))〉)) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉 ·
(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉 ∙
(2nd ‘𝑦))(2nd ‘𝑓))〉))) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13,
16, 17 | xpcval 18222 |
. . 3
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = {〈(Base‘ndx),
𝐵〉, 〈(Hom
‘ndx), 𝐾〉,
〈(comp‘ndx), (𝑥
∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉 ·
(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉 ∙
(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) |
| 19 | | catstr 18005 |
. . 3
⊢
{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐾〉, 〈(comp‘ndx),
(𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉 ·
(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉 ∙
(2nd ‘𝑦))(2nd ‘𝑓))〉))〉} Struct 〈1, ;15〉 |
| 20 | | ccoid 17458 |
. . 3
⊢ comp =
Slot (comp‘ndx) |
| 21 | | snsstp3 4818 |
. . 3
⊢
{〈(comp‘ndx), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉 ·
(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉 ∙
(2nd ‘𝑦))(2nd ‘𝑓))〉))〉} ⊆
{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐾〉, 〈(comp‘ndx),
(𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉 ·
(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉 ∙
(2nd ‘𝑦))(2nd ‘𝑓))〉))〉} |
| 22 | 10 | fvexi 6920 |
. . . . . 6
⊢ 𝐵 ∈ V |
| 23 | 22, 22 | xpex 7773 |
. . . . 5
⊢ (𝐵 × 𝐵) ∈ V |
| 24 | 23, 22 | mpoex 8104 |
. . . 4
⊢ (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉 ·
(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉 ∙
(2nd ‘𝑦))(2nd ‘𝑓))〉)) ∈ V |
| 25 | 24 | a1i 11 |
. . 3
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉 ·
(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉 ∙
(2nd ‘𝑦))(2nd ‘𝑓))〉)) ∈ V) |
| 26 | | xpccofval.o |
. . 3
⊢ 𝑂 = (comp‘𝑇) |
| 27 | 18, 19, 20, 21, 25, 26 | strfv3 17241 |
. 2
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉 ·
(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉 ∙
(2nd ‘𝑦))(2nd ‘𝑓))〉))) |
| 28 | | fnxpc 18221 |
. . . . . . . 8
⊢
×c Fn (V × V) |
| 29 | 28 | fndmi 6672 |
. . . . . . 7
⊢ dom
×c = (V × V) |
| 30 | 29 | ndmov 7617 |
. . . . . 6
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ×c
𝐷) =
∅) |
| 31 | 1, 30 | eqtrid 2789 |
. . . . 5
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = ∅) |
| 32 | 31 | fveq2d 6910 |
. . . 4
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) →
(comp‘𝑇) =
(comp‘∅)) |
| 33 | 20 | str0 17226 |
. . . 4
⊢ ∅ =
(comp‘∅) |
| 34 | 32, 26, 33 | 3eqtr4g 2802 |
. . 3
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑂 = ∅) |
| 35 | 31 | fveq2d 6910 |
. . . . . 6
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) →
(Base‘𝑇) =
(Base‘∅)) |
| 36 | | base0 17252 |
. . . . . 6
⊢ ∅ =
(Base‘∅) |
| 37 | 35, 10, 36 | 3eqtr4g 2802 |
. . . . 5
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐵 = ∅) |
| 38 | 37 | olcd 875 |
. . . 4
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → ((𝐵 × 𝐵) = ∅ ∨ 𝐵 = ∅)) |
| 39 | | 0mpo0 7516 |
. . . 4
⊢ (((𝐵 × 𝐵) = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉 ·
(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉 ∙
(2nd ‘𝑦))(2nd ‘𝑓))〉)) = ∅) |
| 40 | 38, 39 | syl 17 |
. . 3
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉 ·
(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉 ∙
(2nd ‘𝑦))(2nd ‘𝑓))〉)) = ∅) |
| 41 | 34, 40 | eqtr4d 2780 |
. 2
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉 ·
(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉 ∙
(2nd ‘𝑦))(2nd ‘𝑓))〉))) |
| 42 | 27, 41 | pm2.61i 182 |
1
⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉 ·
(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉 ∙
(2nd ‘𝑦))(2nd ‘𝑓))〉)) |