Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrccofval Structured version   Visualization version   GIF version

Theorem estrccofval 17445
 Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.)
Hypotheses
Ref Expression
estrcbas.c 𝐶 = (ExtStrCat‘𝑈)
estrcbas.u (𝜑𝑈𝑉)
estrcco.o · = (comp‘𝐶)
Assertion
Ref Expression
estrccofval (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
Distinct variable groups:   𝑓,𝑔,𝑣,𝑧   𝜑,𝑣,𝑧   𝑣,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐶(𝑧,𝑣,𝑓,𝑔)   · (𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝑉(𝑧,𝑣,𝑓,𝑔)

Proof of Theorem estrccofval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 estrcbas.c . . 3 𝐶 = (ExtStrCat‘𝑈)
2 estrcbas.u . . 3 (𝜑𝑈𝑉)
3 eqid 2758 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
41, 2, 3estrchomfval 17442 . . 3 (𝜑 → (Hom ‘𝐶) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
5 eqidd 2759 . . 3 (𝜑 → (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
61, 2, 4, 5estrcval 17440 . 2 (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩})
7 catstr 17286 . 2 {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩} Struct ⟨1, 15⟩
8 ccoid 16748 . 2 comp = Slot (comp‘ndx)
9 snsstp3 4708 . 2 {⟨(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩} ⊆ {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩}
102, 2xpexd 7472 . . 3 (𝜑 → (𝑈 × 𝑈) ∈ V)
11 mpoexga 7780 . . 3 (((𝑈 × 𝑈) ∈ V ∧ 𝑈𝑉) → (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))) ∈ V)
1210, 2, 11syl2anc 587 . 2 (𝜑 → (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))) ∈ V)
13 estrcco.o . 2 · = (comp‘𝐶)
146, 7, 8, 9, 12, 13strfv3 16590 1 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  Vcvv 3409  {ctp 4526  ⟨cop 4528   × cxp 5522   ∘ ccom 5528  ‘cfv 6335  (class class class)co 7150   ∈ cmpo 7152  1st c1st 7691  2nd c2nd 7692   ↑m cmap 8416  1c1 10576  5c5 11732  ;cdc 12137  ndxcnx 16538  Basecbs 16541  Hom chom 16634  compcco 16635  ExtStrCatcestrc 17438 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-fz 12940  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-hom 16647  df-cco 16648  df-estrc 17439 This theorem is referenced by:  estrcco  17446  dfrngc2  44963  dfringc2  45009
 Copyright terms: Public domain W3C validator