MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrccofval Structured version   Visualization version   GIF version

Theorem estrccofval 18035
Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.)
Hypotheses
Ref Expression
estrcbas.c 𝐶 = (ExtStrCat‘𝑈)
estrcbas.u (𝜑𝑈𝑉)
estrcco.o · = (comp‘𝐶)
Assertion
Ref Expression
estrccofval (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
Distinct variable groups:   𝑓,𝑔,𝑣,𝑧   𝜑,𝑣,𝑧   𝑣,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐶(𝑧,𝑣,𝑓,𝑔)   · (𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝑉(𝑧,𝑣,𝑓,𝑔)

Proof of Theorem estrccofval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 estrcbas.c . . 3 𝐶 = (ExtStrCat‘𝑈)
2 estrcbas.u . . 3 (𝜑𝑈𝑉)
3 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
41, 2, 3estrchomfval 18032 . . 3 (𝜑 → (Hom ‘𝐶) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
5 eqidd 2730 . . 3 (𝜑 → (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
61, 2, 4, 5estrcval 18030 . 2 (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩})
7 catstr 17867 . 2 {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩} Struct ⟨1, 15⟩
8 ccoid 17318 . 2 comp = Slot (comp‘ndx)
9 snsstp3 4769 . 2 {⟨(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩} ⊆ {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩}
102, 2xpexd 7687 . . 3 (𝜑 → (𝑈 × 𝑈) ∈ V)
11 mpoexga 8012 . . 3 (((𝑈 × 𝑈) ∈ V ∧ 𝑈𝑉) → (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))) ∈ V)
1210, 2, 11syl2anc 584 . 2 (𝜑 → (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))) ∈ V)
13 estrcco.o . 2 · = (comp‘𝐶)
146, 7, 8, 9, 12, 13strfv3 17115 1 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  {ctp 4581  cop 4583   × cxp 5617  ccom 5623  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  m cmap 8753  1c1 11010  5c5 12186  cdc 12591  ndxcnx 17104  Basecbs 17120  Hom chom 17172  compcco 17173  ExtStrCatcestrc 18028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-estrc 18029
This theorem is referenced by:  estrcco  18036  dfrngc2  20513  dfringc2  20542
  Copyright terms: Public domain W3C validator