![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > estrccofval | Structured version Visualization version GIF version |
Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.) |
Ref | Expression |
---|---|
estrcbas.c | β’ πΆ = (ExtStrCatβπ) |
estrcbas.u | β’ (π β π β π) |
estrcco.o | β’ Β· = (compβπΆ) |
Ref | Expression |
---|---|
estrccofval | β’ (π β Β· = (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | estrcbas.c | . . 3 β’ πΆ = (ExtStrCatβπ) | |
2 | estrcbas.u | . . 3 β’ (π β π β π) | |
3 | eqid 2725 | . . . 4 β’ (Hom βπΆ) = (Hom βπΆ) | |
4 | 1, 2, 3 | estrchomfval 18113 | . . 3 β’ (π β (Hom βπΆ) = (π₯ β π, π¦ β π β¦ ((Baseβπ¦) βm (Baseβπ₯)))) |
5 | eqidd 2726 | . . 3 β’ (π β (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π))) = (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π)))) | |
6 | 1, 2, 4, 5 | estrcval 18111 | . 2 β’ (π β πΆ = {β¨(Baseβndx), πβ©, β¨(Hom βndx), (Hom βπΆ)β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π)))β©}) |
7 | catstr 17945 | . 2 β’ {β¨(Baseβndx), πβ©, β¨(Hom βndx), (Hom βπΆ)β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π)))β©} Struct β¨1, ;15β© | |
8 | ccoid 17392 | . 2 β’ comp = Slot (compβndx) | |
9 | snsstp3 4817 | . 2 β’ {β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π)))β©} β {β¨(Baseβndx), πβ©, β¨(Hom βndx), (Hom βπΆ)β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π)))β©} | |
10 | 2, 2 | xpexd 7750 | . . 3 β’ (π β (π Γ π) β V) |
11 | mpoexga 8078 | . . 3 β’ (((π Γ π) β V β§ π β π) β (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π))) β V) | |
12 | 10, 2, 11 | syl2anc 582 | . 2 β’ (π β (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π))) β V) |
13 | estrcco.o | . 2 β’ Β· = (compβπΆ) | |
14 | 6, 7, 8, 9, 12, 13 | strfv3 17171 | 1 β’ (π β Β· = (π£ β (π Γ π), π§ β π β¦ (π β ((Baseβπ§) βm (Baseβ(2nd βπ£))), π β ((Baseβ(2nd βπ£)) βm (Baseβ(1st βπ£))) β¦ (π β π)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3463 {ctp 4628 β¨cop 4630 Γ cxp 5670 β ccom 5676 βcfv 6542 (class class class)co 7415 β cmpo 7417 1st c1st 7987 2nd c2nd 7988 βm cmap 8841 1c1 11137 5c5 12298 ;cdc 12705 ndxcnx 17159 Basecbs 17177 Hom chom 17241 compcco 17242 ExtStrCatcestrc 18109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-struct 17113 df-slot 17148 df-ndx 17160 df-base 17178 df-hom 17254 df-cco 17255 df-estrc 18110 |
This theorem is referenced by: estrcco 18117 dfrngc2 20563 dfringc2 20592 |
Copyright terms: Public domain | W3C validator |