Proof of Theorem psrmulr
| Step | Hyp | Ref
| Expression |
| 1 | | psrmulr.s |
. . . . 5
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | | eqid 2737 |
. . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 4 | | psrmulr.m |
. . . . 5
⊢ · =
(.r‘𝑅) |
| 5 | | eqid 2737 |
. . . . 5
⊢
(TopOpen‘𝑅) =
(TopOpen‘𝑅) |
| 6 | | psrmulr.d |
. . . . 5
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 7 | | psrmulr.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑆) |
| 8 | | simpl 482 |
. . . . . 6
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐼 ∈ V) |
| 9 | 1, 2, 6, 7, 8 | psrbas 21953 |
. . . . 5
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ((Base‘𝑅) ↑m 𝐷)) |
| 10 | | eqid 2737 |
. . . . . 6
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 11 | 1, 7, 3, 10 | psrplusg 21956 |
. . . . 5
⊢
(+g‘𝑆) = ( ∘f
(+g‘𝑅)
↾ (𝐵 × 𝐵)) |
| 12 | | eqid 2737 |
. . . . 5
⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))))) |
| 13 | | eqid 2737 |
. . . . 5
⊢ (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) |
| 14 | | eqidd 2738 |
. . . . 5
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) →
(∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)}))) |
| 15 | | simpr 484 |
. . . . 5
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑅 ∈ V) |
| 16 | 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 8, 15 | psrval 21935 |
. . . 4
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), (+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉})) |
| 17 | 16 | fveq2d 6910 |
. . 3
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) →
(.r‘𝑆) =
(.r‘({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}))) |
| 18 | | psrmulr.t |
. . 3
⊢ ∙ =
(.r‘𝑆) |
| 19 | 7 | fvexi 6920 |
. . . . 5
⊢ 𝐵 ∈ V |
| 20 | 19, 19 | mpoex 8104 |
. . . 4
⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))))) ∈
V |
| 21 | | psrvalstr 21936 |
. . . . 5
⊢
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}) Struct 〈1,
9〉 |
| 22 | | mulridx 17338 |
. . . . 5
⊢
.r = Slot (.r‘ndx) |
| 23 | | snsstp3 4818 |
. . . . . 6
⊢
{〈(.r‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ⊆
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))〉} |
| 24 | | ssun1 4178 |
. . . . . 6
⊢
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ⊆
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}) |
| 25 | 23, 24 | sstri 3993 |
. . . . 5
⊢
{〈(.r‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ⊆
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}) |
| 26 | 21, 22, 25 | strfv 17240 |
. . . 4
⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))))) ∈ V → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))))) =
(.r‘({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}))) |
| 27 | 20, 26 | ax-mp 5 |
. . 3
⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))))) =
(.r‘({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉})) |
| 28 | 17, 18, 27 | 3eqtr4g 2802 |
. 2
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V) → ∙ =
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))) |
| 29 | 22 | str0 17226 |
. . . 4
⊢ ∅ =
(.r‘∅) |
| 30 | 29 | eqcomi 2746 |
. . 3
⊢
(.r‘∅) = ∅ |
| 31 | | reldmpsr 21934 |
. . . . . . 7
⊢ Rel dom
mPwSer |
| 32 | 31 | ovprc 7469 |
. . . . . 6
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅) |
| 33 | 1, 32 | eqtrid 2789 |
. . . . 5
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅) |
| 34 | 33 | fveq2d 6910 |
. . . 4
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) →
(.r‘𝑆) =
(.r‘∅)) |
| 35 | 18, 34 | eqtrid 2789 |
. . 3
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → ∙ =
(.r‘∅)) |
| 36 | 33 | fveq2d 6910 |
. . . . . 6
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) →
(Base‘𝑆) =
(Base‘∅)) |
| 37 | | base0 17252 |
. . . . . 6
⊢ ∅ =
(Base‘∅) |
| 38 | 36, 7, 37 | 3eqtr4g 2802 |
. . . . 5
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
| 39 | 38 | olcd 875 |
. . . 4
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
| 40 | | 0mpo0 7516 |
. . . 4
⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))))) =
∅) |
| 41 | 39, 40 | syl 17 |
. . 3
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))))) =
∅) |
| 42 | 30, 35, 41 | 3eqtr4a 2803 |
. 2
⊢ (¬
(𝐼 ∈ V ∧ 𝑅 ∈ V) → ∙ =
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥)))))))) |
| 43 | 28, 42 | pm2.61i 182 |
1
⊢ ∙ =
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘f − 𝑥))))))) |