MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulr Structured version   Visualization version   GIF version

Theorem psrmulr 21352
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
psrmulr.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmulr.b 𝐵 = (Base‘𝑆)
psrmulr.m · = (.r𝑅)
psrmulr.t = (.r𝑆)
psrmulr.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrmulr = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))
Distinct variable groups:   𝑓,𝑔,𝑘,𝑥,𝐵   𝑦,𝑓,𝐷,𝑔,𝑘,𝑥   𝑓,,𝐼,𝑔,𝑘,𝑥,𝑦   · ,𝑓,𝑔,𝑘,𝑥   𝑅,𝑓,𝑔,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑦,)   𝐷()   𝑅(𝑦,)   𝑆(𝑥,𝑦,𝑓,𝑔,,𝑘)   (𝑥,𝑦,𝑓,𝑔,,𝑘)   · (𝑦,)

Proof of Theorem psrmulr
StepHypRef Expression
1 psrmulr.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2736 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2736 . . . . 5 (+g𝑅) = (+g𝑅)
4 psrmulr.m . . . . 5 · = (.r𝑅)
5 eqid 2736 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrmulr.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrmulr.b . . . . . 6 𝐵 = (Base‘𝑆)
8 simpl 483 . . . . . 6 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐼 ∈ V)
91, 2, 6, 7, 8psrbas 21346 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ((Base‘𝑅) ↑m 𝐷))
10 eqid 2736 . . . . . 6 (+g𝑆) = (+g𝑆)
111, 7, 3, 10psrplusg 21349 . . . . 5 (+g𝑆) = ( ∘f (+g𝑅) ↾ (𝐵 × 𝐵))
12 eqid 2736 . . . . 5 (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))
13 eqid 2736 . . . . 5 (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓)) = (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))
14 eqidd 2737 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
15 simpr 485 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑅 ∈ V)
161, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 8, 15psrval 21317 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1716fveq2d 6846 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (.r𝑆) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
18 psrmulr.t . . 3 = (.r𝑆)
197fvexi 6856 . . . . 5 𝐵 ∈ V
2019, 19mpoex 8012 . . . 4 (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))))) ∈ V
21 psrvalstr 21318 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
22 mulrid 17175 . . . . 5 .r = Slot (.r‘ndx)
23 snsstp3 4778 . . . . . 6 {⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))⟩}
24 ssun1 4132 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2523, 24sstri 3953 . . . . 5 {⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2621, 22, 25strfv 17076 . . . 4 ((𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))))) ∈ V → (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))))) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
2720, 26ax-mp 5 . . 3 (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))))) = (.r‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘f · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
2817, 18, 273eqtr4g 2801 . 2 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))))))
2922str0 17061 . . . 4 ∅ = (.r‘∅)
3029eqcomi 2745 . . 3 (.r‘∅) = ∅
31 reldmpsr 21316 . . . . . . 7 Rel dom mPwSer
3231ovprc 7395 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
331, 32eqtrid 2788 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅)
3433fveq2d 6846 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (.r𝑆) = (.r‘∅))
3518, 34eqtrid 2788 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = (.r‘∅))
3633fveq2d 6846 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝑆) = (Base‘∅))
37 base0 17088 . . . . . 6 ∅ = (Base‘∅)
3836, 7, 373eqtr4g 2801 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
3938olcd 872 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐵 = ∅ ∨ 𝐵 = ∅))
40 0mpo0 7440 . . . 4 ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))))) = ∅)
4139, 40syl 17 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))))) = ∅)
4230, 35, 413eqtr4a 2802 . 2 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))))))
4328, 42pm2.61i 182 1 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wo 845   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  cun 3908  c0 4282  {csn 4586  {ctp 4590  cop 4592   class class class wbr 5105  cmpt 5188   × cxp 5631  ccnv 5632  cima 5636  cfv 6496  (class class class)co 7357  cmpo 7359  f cof 7615  r cofr 7616  m cmap 8765  Fincfn 8883  1c1 11052  cle 11190  cmin 11385  cn 12153  9c9 12215  0cn0 12413  ndxcnx 17065  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  TopSetcts 17139  TopOpenctopn 17303  tcpt 17320   Σg cgsu 17322   mPwSer cmps 21306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-tset 17152  df-psr 21311
This theorem is referenced by:  psrmulfval  21353  psrsca  21357  psrvscafval  21358
  Copyright terms: Public domain W3C validator