MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulr Structured version   Visualization version   GIF version

Theorem psrmulr 21892
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
psrmulr.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmulr.b 𝐡 = (Baseβ€˜π‘†)
psrmulr.m Β· = (.rβ€˜π‘…)
psrmulr.t βˆ™ = (.rβ€˜π‘†)
psrmulr.d 𝐷 = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}
Assertion
Ref Expression
psrmulr βˆ™ = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))
Distinct variable groups:   𝑓,𝑔,π‘˜,π‘₯,𝐡   𝑦,𝑓,𝐷,𝑔,π‘˜,π‘₯   𝑓,β„Ž,𝐼,𝑔,π‘˜,π‘₯,𝑦   Β· ,𝑓,𝑔,π‘˜,π‘₯   𝑅,𝑓,𝑔,π‘˜,π‘₯
Allowed substitution hints:   𝐡(𝑦,β„Ž)   𝐷(β„Ž)   𝑅(𝑦,β„Ž)   𝑆(π‘₯,𝑦,𝑓,𝑔,β„Ž,π‘˜)   βˆ™ (π‘₯,𝑦,𝑓,𝑔,β„Ž,π‘˜)   Β· (𝑦,β„Ž)

Proof of Theorem psrmulr
StepHypRef Expression
1 psrmulr.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2728 . . . . 5 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
3 eqid 2728 . . . . 5 (+gβ€˜π‘…) = (+gβ€˜π‘…)
4 psrmulr.m . . . . 5 Β· = (.rβ€˜π‘…)
5 eqid 2728 . . . . 5 (TopOpenβ€˜π‘…) = (TopOpenβ€˜π‘…)
6 psrmulr.d . . . . 5 𝐷 = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}
7 psrmulr.b . . . . . 6 𝐡 = (Baseβ€˜π‘†)
8 simpl 481 . . . . . 6 ((𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ 𝐼 ∈ V)
91, 2, 6, 7, 8psrbas 21885 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ 𝐡 = ((Baseβ€˜π‘…) ↑m 𝐷))
10 eqid 2728 . . . . . 6 (+gβ€˜π‘†) = (+gβ€˜π‘†)
111, 7, 3, 10psrplusg 21888 . . . . 5 (+gβ€˜π‘†) = ( ∘f (+gβ€˜π‘…) β†Ύ (𝐡 Γ— 𝐡))
12 eqid 2728 . . . . 5 (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯))))))) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))
13 eqid 2728 . . . . 5 (π‘₯ ∈ (Baseβ€˜π‘…), 𝑓 ∈ 𝐡 ↦ ((𝐷 Γ— {π‘₯}) ∘f Β· 𝑓)) = (π‘₯ ∈ (Baseβ€˜π‘…), 𝑓 ∈ 𝐡 ↦ ((𝐷 Γ— {π‘₯}) ∘f Β· 𝑓))
14 eqidd 2729 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ (∏tβ€˜(𝐷 Γ— {(TopOpenβ€˜π‘…)})) = (∏tβ€˜(𝐷 Γ— {(TopOpenβ€˜π‘…)})))
15 simpr 483 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ 𝑅 ∈ V)
161, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 8, 15psrval 21855 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ 𝑆 = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘†)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘…βŸ©, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘…), 𝑓 ∈ 𝐡 ↦ ((𝐷 Γ— {π‘₯}) ∘f Β· 𝑓))⟩, ⟨(TopSetβ€˜ndx), (∏tβ€˜(𝐷 Γ— {(TopOpenβ€˜π‘…)}))⟩}))
1716fveq2d 6906 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ (.rβ€˜π‘†) = (.rβ€˜({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘†)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘…βŸ©, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘…), 𝑓 ∈ 𝐡 ↦ ((𝐷 Γ— {π‘₯}) ∘f Β· 𝑓))⟩, ⟨(TopSetβ€˜ndx), (∏tβ€˜(𝐷 Γ— {(TopOpenβ€˜π‘…)}))⟩})))
18 psrmulr.t . . 3 βˆ™ = (.rβ€˜π‘†)
197fvexi 6916 . . . . 5 𝐡 ∈ V
2019, 19mpoex 8090 . . . 4 (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯))))))) ∈ V
21 psrvalstr 21856 . . . . 5 ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘†)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘…βŸ©, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘…), 𝑓 ∈ 𝐡 ↦ ((𝐷 Γ— {π‘₯}) ∘f Β· 𝑓))⟩, ⟨(TopSetβ€˜ndx), (∏tβ€˜(𝐷 Γ— {(TopOpenβ€˜π‘…)}))⟩}) Struct ⟨1, 9⟩
22 mulridx 17282 . . . . 5 .r = Slot (.rβ€˜ndx)
23 snsstp3 4826 . . . . . 6 {⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))⟩} βŠ† {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘†)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))⟩}
24 ssun1 4174 . . . . . 6 {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘†)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))⟩} βŠ† ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘†)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘…βŸ©, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘…), 𝑓 ∈ 𝐡 ↦ ((𝐷 Γ— {π‘₯}) ∘f Β· 𝑓))⟩, ⟨(TopSetβ€˜ndx), (∏tβ€˜(𝐷 Γ— {(TopOpenβ€˜π‘…)}))⟩})
2523, 24sstri 3991 . . . . 5 {⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))⟩} βŠ† ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘†)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘…βŸ©, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘…), 𝑓 ∈ 𝐡 ↦ ((𝐷 Γ— {π‘₯}) ∘f Β· 𝑓))⟩, ⟨(TopSetβ€˜ndx), (∏tβ€˜(𝐷 Γ— {(TopOpenβ€˜π‘…)}))⟩})
2621, 22, 25strfv 17180 . . . 4 ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯))))))) ∈ V β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯))))))) = (.rβ€˜({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘†)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘…βŸ©, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘…), 𝑓 ∈ 𝐡 ↦ ((𝐷 Γ— {π‘₯}) ∘f Β· 𝑓))⟩, ⟨(TopSetβ€˜ndx), (∏tβ€˜(𝐷 Γ— {(TopOpenβ€˜π‘…)}))⟩})))
2720, 26ax-mp 5 . . 3 (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯))))))) = (.rβ€˜({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘†)⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘…βŸ©, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘…), 𝑓 ∈ 𝐡 ↦ ((𝐷 Γ— {π‘₯}) ∘f Β· 𝑓))⟩, ⟨(TopSetβ€˜ndx), (∏tβ€˜(𝐷 Γ— {(TopOpenβ€˜π‘…)}))⟩}))
2817, 18, 273eqtr4g 2793 . 2 ((𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ βˆ™ = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯))))))))
2922str0 17165 . . . 4 βˆ… = (.rβ€˜βˆ…)
3029eqcomi 2737 . . 3 (.rβ€˜βˆ…) = βˆ…
31 reldmpsr 21854 . . . . . . 7 Rel dom mPwSer
3231ovprc 7464 . . . . . 6 (Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ (𝐼 mPwSer 𝑅) = βˆ…)
331, 32eqtrid 2780 . . . . 5 (Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ 𝑆 = βˆ…)
3433fveq2d 6906 . . . 4 (Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ (.rβ€˜π‘†) = (.rβ€˜βˆ…))
3518, 34eqtrid 2780 . . 3 (Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ βˆ™ = (.rβ€˜βˆ…))
3633fveq2d 6906 . . . . . 6 (Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ (Baseβ€˜π‘†) = (Baseβ€˜βˆ…))
37 base0 17192 . . . . . 6 βˆ… = (Baseβ€˜βˆ…)
3836, 7, 373eqtr4g 2793 . . . . 5 (Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ 𝐡 = βˆ…)
3938olcd 872 . . . 4 (Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ (𝐡 = βˆ… ∨ 𝐡 = βˆ…))
40 0mpo0 7509 . . . 4 ((𝐡 = βˆ… ∨ 𝐡 = βˆ…) β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯))))))) = βˆ…)
4139, 40syl 17 . . 3 (Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯))))))) = βˆ…)
4230, 35, 413eqtr4a 2794 . 2 (Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ βˆ™ = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯))))))))
4328, 42pm2.61i 182 1 βˆ™ = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘˜ ∈ 𝐷 ↦ (𝑅 Ξ£g (π‘₯ ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≀ π‘˜} ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜(π‘˜ ∘f βˆ’ π‘₯)))))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∧ wa 394   ∨ wo 845   = wceq 1533   ∈ wcel 2098  {crab 3430  Vcvv 3473   βˆͺ cun 3947  βˆ…c0 4326  {csn 4632  {ctp 4636  βŸ¨cop 4638   class class class wbr 5152   ↦ cmpt 5235   Γ— cxp 5680  β—‘ccnv 5681   β€œ cima 5685  β€˜cfv 6553  (class class class)co 7426   ∈ cmpo 7428   ∘f cof 7689   ∘r cofr 7690   ↑m cmap 8851  Fincfn 8970  1c1 11147   ≀ cle 11287   βˆ’ cmin 11482  β„•cn 12250  9c9 12312  β„•0cn0 12510  ndxcnx 17169  Basecbs 17187  +gcplusg 17240  .rcmulr 17241  Scalarcsca 17243   ·𝑠 cvsca 17244  TopSetcts 17246  TopOpenctopn 17410  βˆtcpt 17427   Ξ£g cgsu 17429   mPwSer cmps 21844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-sca 17256  df-vsca 17257  df-tset 17259  df-psr 21849
This theorem is referenced by:  psrmulfval  21893  psrsca  21897  psrvscafval  21898
  Copyright terms: Public domain W3C validator