| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fuccofval | Structured version Visualization version GIF version | ||
| Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| fucval.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| fucval.b | ⊢ 𝐵 = (𝐶 Func 𝐷) |
| fucval.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| fucval.a | ⊢ 𝐴 = (Base‘𝐶) |
| fucval.o | ⊢ · = (comp‘𝐷) |
| fucval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| fucval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| fuccofval.x | ⊢ ∙ = (comp‘𝑄) |
| Ref | Expression |
|---|---|
| fuccofval | ⊢ (𝜑 → ∙ = (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucval.q | . . . 4 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 2 | fucval.b | . . . 4 ⊢ 𝐵 = (𝐶 Func 𝐷) | |
| 3 | fucval.n | . . . 4 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 4 | fucval.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
| 5 | fucval.o | . . . 4 ⊢ · = (comp‘𝐷) | |
| 6 | fucval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 7 | fucval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 8 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) = (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | fucval 17865 | . . 3 ⊢ (𝜑 → 𝑄 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉}) |
| 10 | 9 | fveq2d 6826 | . 2 ⊢ (𝜑 → (comp‘𝑄) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉})) |
| 11 | fuccofval.x | . 2 ⊢ ∙ = (comp‘𝑄) | |
| 12 | 2 | ovexi 7380 | . . . . 5 ⊢ 𝐵 ∈ V |
| 13 | 12, 12 | xpex 7686 | . . . 4 ⊢ (𝐵 × 𝐵) ∈ V |
| 14 | 13, 12 | mpoex 8011 | . . 3 ⊢ (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) ∈ V |
| 15 | catstr 17864 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉} Struct 〈1, ;15〉 | |
| 16 | ccoid 17315 | . . . 4 ⊢ comp = Slot (comp‘ndx) | |
| 17 | snsstp3 4770 | . . . 4 ⊢ {〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉} ⊆ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉} | |
| 18 | 15, 16, 17 | strfv 17111 | . . 3 ⊢ ((𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) ∈ V → (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉})) |
| 19 | 14, 18 | ax-mp 5 | . 2 ⊢ (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉}) |
| 20 | 10, 11, 19 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → ∙ = (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⦋csb 3850 {ctp 4580 〈cop 4582 ↦ cmpt 5172 × cxp 5614 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 1c1 11004 5c5 12180 ;cdc 12585 ndxcnx 17101 Basecbs 17117 Hom chom 17169 compcco 17170 Catccat 17567 Func cfunc 17758 Nat cnat 17848 FuncCat cfuc 17849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-hom 17182 df-cco 17183 df-fuc 17851 |
| This theorem is referenced by: fucbas 17867 fuchom 17868 fucco 17869 |
| Copyright terms: Public domain | W3C validator |