MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soex Structured version   Visualization version   GIF version

Theorem soex 7929
Description: If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
soex ((𝑅 Or 𝐴𝑅𝑉) → 𝐴 ∈ V)

Proof of Theorem soex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝐴 = ∅) → 𝐴 = ∅)
2 0ex 5307 . . 3 ∅ ∈ V
31, 2eqeltrdi 2837 . 2 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝐴 = ∅) → 𝐴 ∈ V)
4 n0 4347 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
5 vsnex 5431 . . . . . . . . 9 {𝑥} ∈ V
6 dmexg 7909 . . . . . . . . . 10 (𝑅𝑉 → dom 𝑅 ∈ V)
7 rnexg 7910 . . . . . . . . . 10 (𝑅𝑉 → ran 𝑅 ∈ V)
8 unexg 7751 . . . . . . . . . 10 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
96, 7, 8syl2anc 583 . . . . . . . . 9 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
10 unexg 7751 . . . . . . . . 9 (({𝑥} ∈ V ∧ (dom 𝑅 ∪ ran 𝑅) ∈ V) → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
115, 9, 10sylancr 586 . . . . . . . 8 (𝑅𝑉 → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
1211ad2antlr 726 . . . . . . 7 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝑥𝐴) → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
13 sossfld 6190 . . . . . . . . 9 ((𝑅 Or 𝐴𝑥𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
1413adantlr 714 . . . . . . . 8 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝑥𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
15 ssundif 4488 . . . . . . . 8 (𝐴 ⊆ ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ↔ (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
1614, 15sylibr 233 . . . . . . 7 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝑥𝐴) → 𝐴 ⊆ ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)))
1712, 16ssexd 5324 . . . . . 6 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝑥𝐴) → 𝐴 ∈ V)
1817ex 412 . . . . 5 ((𝑅 Or 𝐴𝑅𝑉) → (𝑥𝐴𝐴 ∈ V))
1918exlimdv 1929 . . . 4 ((𝑅 Or 𝐴𝑅𝑉) → (∃𝑥 𝑥𝐴𝐴 ∈ V))
2019imp 406 . . 3 (((𝑅 Or 𝐴𝑅𝑉) ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ V)
214, 20sylan2b 593 . 2 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
223, 21pm2.61dane 3026 1 ((𝑅 Or 𝐴𝑅𝑉) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wex 1774  wcel 2099  wne 2937  Vcvv 3471  cdif 3944  cun 3945  wss 3947  c0 4323  {csn 4629   Or wor 5589  dom cdm 5678  ran crn 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-po 5590  df-so 5591  df-cnv 5686  df-dm 5688  df-rn 5689
This theorem is referenced by:  ween  10059  zorn2lem1  10520  zorn2lem4  10523
  Copyright terms: Public domain W3C validator