Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . 3
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝐴 = ∅) → 𝐴 = ∅) |
2 | | 0ex 5231 |
. . 3
⊢ ∅
∈ V |
3 | 1, 2 | eqeltrdi 2847 |
. 2
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝐴 = ∅) → 𝐴 ∈ V) |
4 | | n0 4280 |
. . 3
⊢ (𝐴 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐴) |
5 | | snex 5354 |
. . . . . . . . 9
⊢ {𝑥} ∈ V |
6 | | dmexg 7750 |
. . . . . . . . . 10
⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) |
7 | | rnexg 7751 |
. . . . . . . . . 10
⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) |
8 | | unexg 7599 |
. . . . . . . . . 10
⊢ ((dom
𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V) |
9 | 6, 7, 8 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V) |
10 | | unexg 7599 |
. . . . . . . . 9
⊢ (({𝑥} ∈ V ∧ (dom 𝑅 ∪ ran 𝑅) ∈ V) → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V) |
11 | 5, 9, 10 | sylancr 587 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V) |
12 | 11 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V) |
13 | | sossfld 6089 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
14 | 13 | adantlr 712 |
. . . . . . . 8
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
15 | | ssundif 4418 |
. . . . . . . 8
⊢ (𝐴 ⊆ ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ↔ (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
16 | 14, 15 | sylibr 233 |
. . . . . . 7
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅))) |
17 | 12, 16 | ssexd 5248 |
. . . . . 6
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ V) |
18 | 17 | ex 413 |
. . . . 5
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) → (𝑥 ∈ 𝐴 → 𝐴 ∈ V)) |
19 | 18 | exlimdv 1936 |
. . . 4
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) → (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ∈ V)) |
20 | 19 | imp 407 |
. . 3
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ ∃𝑥 𝑥 ∈ 𝐴) → 𝐴 ∈ V) |
21 | 4, 20 | sylan2b 594 |
. 2
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V) |
22 | 3, 21 | pm2.61dane 3032 |
1
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) → 𝐴 ∈ V) |