MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soex Structured version   Visualization version   GIF version

Theorem soex 7621
Description: If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
soex ((𝑅 Or 𝐴𝑅𝑉) → 𝐴 ∈ V)

Proof of Theorem soex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . 3 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝐴 = ∅) → 𝐴 = ∅)
2 0ex 5197 . . 3 ∅ ∈ V
31, 2eqeltrdi 2924 . 2 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝐴 = ∅) → 𝐴 ∈ V)
4 n0 4293 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
5 snex 5319 . . . . . . . . 9 {𝑥} ∈ V
6 dmexg 7608 . . . . . . . . . 10 (𝑅𝑉 → dom 𝑅 ∈ V)
7 rnexg 7609 . . . . . . . . . 10 (𝑅𝑉 → ran 𝑅 ∈ V)
8 unexg 7466 . . . . . . . . . 10 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
96, 7, 8syl2anc 587 . . . . . . . . 9 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
10 unexg 7466 . . . . . . . . 9 (({𝑥} ∈ V ∧ (dom 𝑅 ∪ ran 𝑅) ∈ V) → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
115, 9, 10sylancr 590 . . . . . . . 8 (𝑅𝑉 → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
1211ad2antlr 726 . . . . . . 7 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝑥𝐴) → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
13 sossfld 6030 . . . . . . . . 9 ((𝑅 Or 𝐴𝑥𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
1413adantlr 714 . . . . . . . 8 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝑥𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
15 ssundif 4416 . . . . . . . 8 (𝐴 ⊆ ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ↔ (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
1614, 15sylibr 237 . . . . . . 7 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝑥𝐴) → 𝐴 ⊆ ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)))
1712, 16ssexd 5214 . . . . . 6 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝑥𝐴) → 𝐴 ∈ V)
1817ex 416 . . . . 5 ((𝑅 Or 𝐴𝑅𝑉) → (𝑥𝐴𝐴 ∈ V))
1918exlimdv 1935 . . . 4 ((𝑅 Or 𝐴𝑅𝑉) → (∃𝑥 𝑥𝐴𝐴 ∈ V))
2019imp 410 . . 3 (((𝑅 Or 𝐴𝑅𝑉) ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ V)
214, 20sylan2b 596 . 2 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
223, 21pm2.61dane 3101 1 ((𝑅 Or 𝐴𝑅𝑉) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2115  wne 3014  Vcvv 3480  cdif 3916  cun 3917  wss 3919  c0 4276  {csn 4550   Or wor 5460  dom cdm 5542  ran crn 5543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rab 3142  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-po 5461  df-so 5462  df-cnv 5550  df-dm 5552  df-rn 5553
This theorem is referenced by:  ween  9459  zorn2lem1  9916  zorn2lem4  9919
  Copyright terms: Public domain W3C validator