| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpr 484 | . . 3
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝐴 = ∅) → 𝐴 = ∅) | 
| 2 |  | 0ex 5307 | . . 3
⊢ ∅
∈ V | 
| 3 | 1, 2 | eqeltrdi 2849 | . 2
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝐴 = ∅) → 𝐴 ∈ V) | 
| 4 |  | n0 4353 | . . 3
⊢ (𝐴 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐴) | 
| 5 |  | vsnex 5434 | . . . . . . . . 9
⊢ {𝑥} ∈ V | 
| 6 |  | dmexg 7923 | . . . . . . . . . 10
⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | 
| 7 |  | rnexg 7924 | . . . . . . . . . 10
⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) | 
| 8 |  | unexg 7763 | . . . . . . . . . 10
⊢ ((dom
𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V) | 
| 9 | 6, 7, 8 | syl2anc 584 | . . . . . . . . 9
⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V) | 
| 10 |  | unexg 7763 | . . . . . . . . 9
⊢ (({𝑥} ∈ V ∧ (dom 𝑅 ∪ ran 𝑅) ∈ V) → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V) | 
| 11 | 5, 9, 10 | sylancr 587 | . . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V) | 
| 12 | 11 | ad2antlr 727 | . . . . . . 7
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V) | 
| 13 |  | sossfld 6206 | . . . . . . . . 9
⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅)) | 
| 14 | 13 | adantlr 715 | . . . . . . . 8
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅)) | 
| 15 |  | ssundif 4488 | . . . . . . . 8
⊢ (𝐴 ⊆ ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ↔ (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅)) | 
| 16 | 14, 15 | sylibr 234 | . . . . . . 7
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅))) | 
| 17 | 12, 16 | ssexd 5324 | . . . . . 6
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ V) | 
| 18 | 17 | ex 412 | . . . . 5
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) → (𝑥 ∈ 𝐴 → 𝐴 ∈ V)) | 
| 19 | 18 | exlimdv 1933 | . . . 4
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) → (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ∈ V)) | 
| 20 | 19 | imp 406 | . . 3
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ ∃𝑥 𝑥 ∈ 𝐴) → 𝐴 ∈ V) | 
| 21 | 4, 20 | sylan2b 594 | . 2
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V) | 
| 22 | 3, 21 | pm2.61dane 3029 | 1
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) → 𝐴 ∈ V) |