| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . 3
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝐴 = ∅) → 𝐴 = ∅) |
| 2 | | 0ex 5282 |
. . 3
⊢ ∅
∈ V |
| 3 | 1, 2 | eqeltrdi 2843 |
. 2
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝐴 = ∅) → 𝐴 ∈ V) |
| 4 | | n0 4333 |
. . 3
⊢ (𝐴 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐴) |
| 5 | | vsnex 5409 |
. . . . . . . . 9
⊢ {𝑥} ∈ V |
| 6 | | dmexg 7902 |
. . . . . . . . . 10
⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) |
| 7 | | rnexg 7903 |
. . . . . . . . . 10
⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) |
| 8 | | unexg 7742 |
. . . . . . . . . 10
⊢ ((dom
𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V) |
| 9 | 6, 7, 8 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V) |
| 10 | | unexg 7742 |
. . . . . . . . 9
⊢ (({𝑥} ∈ V ∧ (dom 𝑅 ∪ ran 𝑅) ∈ V) → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V) |
| 11 | 5, 9, 10 | sylancr 587 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V) |
| 12 | 11 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V) |
| 13 | | sossfld 6180 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 14 | 13 | adantlr 715 |
. . . . . . . 8
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 15 | | ssundif 4468 |
. . . . . . . 8
⊢ (𝐴 ⊆ ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ↔ (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 16 | 14, 15 | sylibr 234 |
. . . . . . 7
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅))) |
| 17 | 12, 16 | ssexd 5299 |
. . . . . 6
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ V) |
| 18 | 17 | ex 412 |
. . . . 5
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) → (𝑥 ∈ 𝐴 → 𝐴 ∈ V)) |
| 19 | 18 | exlimdv 1933 |
. . . 4
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) → (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ∈ V)) |
| 20 | 19 | imp 406 |
. . 3
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ ∃𝑥 𝑥 ∈ 𝐴) → 𝐴 ∈ V) |
| 21 | 4, 20 | sylan2b 594 |
. 2
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V) |
| 22 | 3, 21 | pm2.61dane 3020 |
1
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) → 𝐴 ∈ V) |