| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > restopnssd | Structured version Visualization version GIF version | ||
| Description: A topology restricted to an open set is a subset of the original topology. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| Ref | Expression |
|---|---|
| restopnssd.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| restopnssd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
| Ref | Expression |
|---|---|
| restopnssd | ⊢ (𝜑 → (𝐽 ↾t 𝐴) ⊆ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐽 ↾t 𝐴)) | |
| 2 | restopnssd.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐽 ∈ Top) |
| 4 | restopnssd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐽) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐴 ∈ 𝐽) |
| 6 | restopn2 23095 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐴))) | |
| 7 | 3, 5, 6 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐴))) |
| 8 | 1, 7 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐴)) |
| 9 | 8 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ 𝐽) |
| 10 | 9 | ssd 45204 | 1 ⊢ (𝜑 → (𝐽 ↾t 𝐴) ⊆ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3898 (class class class)co 7354 ↾t crest 17328 Topctop 22811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-en 8878 df-fin 8881 df-fi 9304 df-rest 17330 df-topgen 17351 df-top 22812 df-topon 22829 df-bases 22864 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |