Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > restopnssd | Structured version Visualization version GIF version |
Description: A topology restricted to an open set is a subset of the original topology. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
Ref | Expression |
---|---|
restopnssd.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
restopnssd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
Ref | Expression |
---|---|
restopnssd | ⊢ (𝜑 → (𝐽 ↾t 𝐴) ⊆ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐽 ↾t 𝐴)) | |
2 | restopnssd.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) | |
3 | 2 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐽 ∈ Top) |
4 | restopnssd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐽) | |
5 | 4 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐴 ∈ 𝐽) |
6 | restopn2 22373 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐴))) | |
7 | 3, 5, 6 | syl2anc 585 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐴))) |
8 | 1, 7 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐴)) |
9 | 8 | simpld 496 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ 𝐽) |
10 | 9 | ssd 42668 | 1 ⊢ (𝜑 → (𝐽 ↾t 𝐴) ⊆ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2104 ⊆ wss 3892 (class class class)co 7307 ↾t crest 17176 Topctop 22087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-en 8765 df-fin 8768 df-fi 9214 df-rest 17178 df-topgen 17199 df-top 22088 df-topon 22105 df-bases 22141 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |