![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > borelmbl | Structured version Visualization version GIF version |
Description: All Borel subsets of the n-dimensional Real numbers are Lebesgue measurable. This is Proposition 115G (b) of [Fremlin1] p. 32. See also Definition 111G (d) of [Fremlin1] p. 13. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
borelmbl.x | β’ (π β π β Fin) |
borelmbl.s | β’ π = dom (volnβπ) |
borelmbl.b | β’ π΅ = (SalGenβ(TopOpenβ(β^βπ))) |
Ref | Expression |
---|---|
borelmbl | β’ (π β π΅ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6905 | . 2 β’ (π β (TopOpenβ(β^βπ)) β V) | |
2 | borelmbl.b | . 2 β’ π΅ = (SalGenβ(TopOpenβ(β^βπ))) | |
3 | borelmbl.x | . . 3 β’ (π β π β Fin) | |
4 | borelmbl.s | . . 3 β’ π = dom (volnβπ) | |
5 | 3, 4 | dmovnsal 45626 | . 2 β’ (π β π β SAlg) |
6 | 3 | adantr 479 | . . . 4 β’ ((π β§ π¦ β (TopOpenβ(β^βπ))) β π β Fin) |
7 | simpr 483 | . . . 4 β’ ((π β§ π¦ β (TopOpenβ(β^βπ))) β π¦ β (TopOpenβ(β^βπ))) | |
8 | 6, 4, 7 | opnvonmbl 45648 | . . 3 β’ ((π β§ π¦ β (TopOpenβ(β^βπ))) β π¦ β π) |
9 | 8 | ssd 44070 | . 2 β’ (π β (TopOpenβ(β^βπ)) β π) |
10 | eqid 2730 | . . . 4 β’ dom (volnβπ) = dom (volnβπ) | |
11 | 3, 10 | unidmvon 45631 | . . 3 β’ (π β βͺ dom (volnβπ) = (β βm π)) |
12 | 4 | unieqi 4920 | . . . 4 β’ βͺ π = βͺ dom (volnβπ) |
13 | 12 | a1i 11 | . . 3 β’ (π β βͺ π = βͺ dom (volnβπ)) |
14 | rrxunitopnfi 45306 | . . . 4 β’ (π β Fin β βͺ (TopOpenβ(β^βπ)) = (β βm π)) | |
15 | 3, 14 | syl 17 | . . 3 β’ (π β βͺ (TopOpenβ(β^βπ)) = (β βm π)) |
16 | 11, 13, 15 | 3eqtr4d 2780 | . 2 β’ (π β βͺ π = βͺ (TopOpenβ(β^βπ))) |
17 | 1, 2, 5, 9, 16 | salgenss 45350 | 1 β’ (π β π΅ β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 Vcvv 3472 β wss 3947 βͺ cuni 4907 dom cdm 5675 βcfv 6542 (class class class)co 7411 βm cmap 8822 Fincfn 8941 βcr 11111 TopOpenctopn 17371 β^crrx 25131 SalGencsalgen 45326 volncvoln 45552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cc 10432 ax-ac2 10460 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-oadd 8472 df-omul 8473 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-dju 9898 df-card 9936 df-acn 9939 df-ac 10113 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-fl 13761 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-prod 15854 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-prds 17397 df-pws 17399 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 df-ghm 19128 df-cntz 19222 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-rhm 20363 df-subrng 20434 df-subrg 20459 df-drng 20502 df-field 20503 df-abv 20568 df-staf 20596 df-srng 20597 df-lmod 20616 df-lss 20687 df-lmhm 20777 df-lvec 20858 df-sra 20930 df-rgmod 20931 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-cnfld 21145 df-refld 21377 df-phl 21398 df-dsmm 21506 df-frlm 21521 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cmp 23111 df-xms 24046 df-ms 24047 df-nm 24311 df-ngp 24312 df-tng 24313 df-nrg 24314 df-nlm 24315 df-clm 24810 df-cph 24916 df-tcph 24917 df-rrx 25133 df-ovol 25213 df-vol 25214 df-salg 45323 df-salgen 45327 df-sumge0 45377 df-mea 45464 df-ome 45504 df-caragen 45506 df-ovoln 45551 df-voln 45553 |
This theorem is referenced by: bormflebmf 45767 |
Copyright terms: Public domain | W3C validator |