| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > borelmbl | Structured version Visualization version GIF version | ||
| Description: All Borel subsets of the n-dimensional Real numbers are Lebesgue measurable. This is Proposition 115G (b) of [Fremlin1] p. 32. See also Definition 111G (d) of [Fremlin1] p. 13. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| borelmbl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| borelmbl.s | ⊢ 𝑆 = dom (voln‘𝑋) |
| borelmbl.b | ⊢ 𝐵 = (SalGen‘(TopOpen‘(ℝ^‘𝑋))) |
| Ref | Expression |
|---|---|
| borelmbl | ⊢ (𝜑 → 𝐵 ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6845 | . 2 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ V) | |
| 2 | borelmbl.b | . 2 ⊢ 𝐵 = (SalGen‘(TopOpen‘(ℝ^‘𝑋))) | |
| 3 | borelmbl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 4 | borelmbl.s | . . 3 ⊢ 𝑆 = dom (voln‘𝑋) | |
| 5 | 3, 4 | dmovnsal 46737 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 6 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (TopOpen‘(ℝ^‘𝑋))) → 𝑋 ∈ Fin) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (TopOpen‘(ℝ^‘𝑋))) → 𝑦 ∈ (TopOpen‘(ℝ^‘𝑋))) | |
| 8 | 6, 4, 7 | opnvonmbl 46759 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (TopOpen‘(ℝ^‘𝑋))) → 𝑦 ∈ 𝑆) |
| 9 | 8 | ssd 45204 | . 2 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ⊆ 𝑆) |
| 10 | eqid 2733 | . . . 4 ⊢ dom (voln‘𝑋) = dom (voln‘𝑋) | |
| 11 | 3, 10 | unidmvon 46742 | . . 3 ⊢ (𝜑 → ∪ dom (voln‘𝑋) = (ℝ ↑m 𝑋)) |
| 12 | 4 | unieqi 4872 | . . . 4 ⊢ ∪ 𝑆 = ∪ dom (voln‘𝑋) |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → ∪ 𝑆 = ∪ dom (voln‘𝑋)) |
| 14 | rrxunitopnfi 46417 | . . . 4 ⊢ (𝑋 ∈ Fin → ∪ (TopOpen‘(ℝ^‘𝑋)) = (ℝ ↑m 𝑋)) | |
| 15 | 3, 14 | syl 17 | . . 3 ⊢ (𝜑 → ∪ (TopOpen‘(ℝ^‘𝑋)) = (ℝ ↑m 𝑋)) |
| 16 | 11, 13, 15 | 3eqtr4d 2778 | . 2 ⊢ (𝜑 → ∪ 𝑆 = ∪ (TopOpen‘(ℝ^‘𝑋))) |
| 17 | 1, 2, 5, 9, 16 | salgenss 46461 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ∪ cuni 4860 dom cdm 5621 ‘cfv 6488 (class class class)co 7354 ↑m cmap 8758 Fincfn 8877 ℝcr 11014 TopOpenctopn 17329 ℝ^crrx 25313 SalGencsalgen 46437 volncvoln 46663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cc 10335 ax-ac2 10363 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 ax-addf 11094 ax-mulf 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-tpos 8164 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-oadd 8397 df-omul 8398 df-er 8630 df-map 8760 df-pm 8761 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-fi 9304 df-sup 9335 df-inf 9336 df-oi 9405 df-dju 9803 df-card 9841 df-acn 9844 df-ac 10016 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-ioo 13253 df-ico 13255 df-icc 13256 df-fz 13412 df-fzo 13559 df-fl 13700 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-rlim 15400 df-sum 15598 df-prod 15815 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-starv 17180 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-hom 17189 df-cco 17190 df-rest 17330 df-topn 17331 df-0g 17349 df-gsum 17350 df-topgen 17351 df-prds 17355 df-pws 17357 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-submnd 18696 df-grp 18853 df-minusg 18854 df-sbg 18855 df-subg 19040 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-cring 20158 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 df-dvr 20323 df-rhm 20394 df-subrng 20465 df-subrg 20489 df-drng 20650 df-field 20651 df-abv 20728 df-staf 20758 df-srng 20759 df-lmod 20799 df-lss 20869 df-lmhm 20960 df-lvec 21041 df-sra 21111 df-rgmod 21112 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-cnfld 21296 df-refld 21546 df-phl 21567 df-dsmm 21673 df-frlm 21688 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cmp 23305 df-xms 24238 df-ms 24239 df-nm 24500 df-ngp 24501 df-tng 24502 df-nrg 24503 df-nlm 24504 df-clm 24993 df-cph 25098 df-tcph 25099 df-rrx 25315 df-ovol 25395 df-vol 25396 df-salg 46434 df-salgen 46438 df-sumge0 46488 df-mea 46575 df-ome 46615 df-caragen 46617 df-ovoln 46662 df-voln 46664 |
| This theorem is referenced by: bormflebmf 46878 |
| Copyright terms: Public domain | W3C validator |