Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxsnicc Structured version   Visualization version   GIF version

Theorem rrxsnicc 42942
Description: A multidimensional singleton expressed as a multidimensional closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
rrxsnicc.1 (𝜑𝐴 ∈ (ℝ ↑m 𝑋))
Assertion
Ref Expression
rrxsnicc (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
Distinct variable groups:   𝐴,𝑘   𝑘,𝑋   𝜑,𝑘

Proof of Theorem rrxsnicc
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpfn 8450 . . . . . 6 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) → 𝑓 Fn 𝑋)
21adantl 485 . . . . 5 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 Fn 𝑋)
3 rrxsnicc.1 . . . . . . 7 (𝜑𝐴 ∈ (ℝ ↑m 𝑋))
4 elmapfn 8412 . . . . . . 7 (𝐴 ∈ (ℝ ↑m 𝑋) → 𝐴 Fn 𝑋)
53, 4syl 17 . . . . . 6 (𝜑𝐴 Fn 𝑋)
65adantr 484 . . . . 5 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝐴 Fn 𝑋)
7 simpll 766 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝜑)
8 fveq2 6645 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
98, 8oveq12d 7153 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐴𝑘)[,](𝐴𝑘)) = ((𝐴𝑗)[,](𝐴𝑗)))
109cbvixpv 8462 . . . . . . . . 9 X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))
1110eleq2i 2881 . . . . . . . 8 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
1211biimpi 219 . . . . . . 7 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) → 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
1312ad2antlr 726 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
14 simpr 488 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝑗𝑋)
15 elmapi 8411 . . . . . . . . . . . . 13 (𝐴 ∈ (ℝ ↑m 𝑋) → 𝐴:𝑋⟶ℝ)
163, 15syl 17 . . . . . . . . . . . 12 (𝜑𝐴:𝑋⟶ℝ)
1716ffvelrnda 6828 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1817adantlr 714 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1918, 18iccssred 12812 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → ((𝐴𝑗)[,](𝐴𝑗)) ⊆ ℝ)
20 fvixp2 41827 . . . . . . . . . 10 ((𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗)))
2120adantll 713 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗)))
2219, 21sseldd 3916 . . . . . . . 8 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ℝ)
2322rexrd 10680 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ℝ*)
2418rexrd 10680 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ∈ ℝ*)
25 iccleub 12780 . . . . . . . 8 (((𝐴𝑗) ∈ ℝ* ∧ (𝐴𝑗) ∈ ℝ* ∧ (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗))) → (𝑓𝑗) ≤ (𝐴𝑗))
2624, 24, 21, 25syl3anc 1368 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ≤ (𝐴𝑗))
27 iccgelb 12781 . . . . . . . 8 (((𝐴𝑗) ∈ ℝ* ∧ (𝐴𝑗) ∈ ℝ* ∧ (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗))) → (𝐴𝑗) ≤ (𝑓𝑗))
2824, 24, 21, 27syl3anc 1368 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ≤ (𝑓𝑗))
2923, 24, 26, 28xrletrid 12536 . . . . . 6 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) = (𝐴𝑗))
307, 13, 14, 29syl21anc 836 . . . . 5 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → (𝑓𝑗) = (𝐴𝑗))
312, 6, 30eqfnfvd 6782 . . . 4 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 = 𝐴)
32 velsn 4541 . . . . . 6 (𝑓 ∈ {𝐴} ↔ 𝑓 = 𝐴)
3332bicomi 227 . . . . 5 (𝑓 = 𝐴𝑓 ∈ {𝐴})
3433biimpi 219 . . . 4 (𝑓 = 𝐴𝑓 ∈ {𝐴})
3531, 34syl 17 . . 3 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 ∈ {𝐴})
3635ssd 41716 . 2 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ⊆ {𝐴})
373elexd 3461 . . . . 5 (𝜑𝐴 ∈ V)
3816ffvelrnda 6828 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3938leidd 11195 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
4038, 38, 38, 39, 39eliccd 42141 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘)))
4140ralrimiva 3149 . . . . 5 (𝜑 → ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘)))
4237, 5, 413jca 1125 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘))))
43 elixp2 8448 . . . 4 (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ (𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘))))
4442, 43sylibr 237 . . 3 (𝜑𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)))
45 snssg 4678 . . . 4 (𝐴 ∈ (ℝ ↑m 𝑋) → (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
463, 45syl 17 . . 3 (𝜑 → (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
4744, 46mpbid 235 . 2 (𝜑 → {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)))
4836, 47eqssd 3932 1 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  {csn 4525   class class class wbr 5030   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  Xcixp 8444  cr 10525  *cxr 10663  cle 10665  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-icc 12733
This theorem is referenced by:  snvonmbl  43325  vonsn  43330
  Copyright terms: Public domain W3C validator