Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxsnicc Structured version   Visualization version   GIF version

Theorem rrxsnicc 43812
Description: A multidimensional singleton expressed as a multidimensional closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
rrxsnicc.1 (𝜑𝐴 ∈ (ℝ ↑m 𝑋))
Assertion
Ref Expression
rrxsnicc (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
Distinct variable groups:   𝐴,𝑘   𝑘,𝑋   𝜑,𝑘

Proof of Theorem rrxsnicc
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpfn 8674 . . . . . 6 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) → 𝑓 Fn 𝑋)
21adantl 482 . . . . 5 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 Fn 𝑋)
3 rrxsnicc.1 . . . . . . 7 (𝜑𝐴 ∈ (ℝ ↑m 𝑋))
4 elmapfn 8636 . . . . . . 7 (𝐴 ∈ (ℝ ↑m 𝑋) → 𝐴 Fn 𝑋)
53, 4syl 17 . . . . . 6 (𝜑𝐴 Fn 𝑋)
65adantr 481 . . . . 5 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝐴 Fn 𝑋)
7 simpll 764 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝜑)
8 fveq2 6771 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
98, 8oveq12d 7289 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐴𝑘)[,](𝐴𝑘)) = ((𝐴𝑗)[,](𝐴𝑗)))
109cbvixpv 8686 . . . . . . . . 9 X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))
1110eleq2i 2832 . . . . . . . 8 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
1211biimpi 215 . . . . . . 7 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) → 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
1312ad2antlr 724 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
14 simpr 485 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝑗𝑋)
15 elmapi 8620 . . . . . . . . . . . . 13 (𝐴 ∈ (ℝ ↑m 𝑋) → 𝐴:𝑋⟶ℝ)
163, 15syl 17 . . . . . . . . . . . 12 (𝜑𝐴:𝑋⟶ℝ)
1716ffvelrnda 6958 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1817adantlr 712 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1918, 18iccssred 13165 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → ((𝐴𝑗)[,](𝐴𝑗)) ⊆ ℝ)
20 fvixp2 42708 . . . . . . . . . 10 ((𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗)))
2120adantll 711 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗)))
2219, 21sseldd 3927 . . . . . . . 8 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ℝ)
2322rexrd 11026 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ℝ*)
2418rexrd 11026 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ∈ ℝ*)
25 iccleub 13133 . . . . . . . 8 (((𝐴𝑗) ∈ ℝ* ∧ (𝐴𝑗) ∈ ℝ* ∧ (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗))) → (𝑓𝑗) ≤ (𝐴𝑗))
2624, 24, 21, 25syl3anc 1370 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ≤ (𝐴𝑗))
27 iccgelb 13134 . . . . . . . 8 (((𝐴𝑗) ∈ ℝ* ∧ (𝐴𝑗) ∈ ℝ* ∧ (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗))) → (𝐴𝑗) ≤ (𝑓𝑗))
2824, 24, 21, 27syl3anc 1370 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ≤ (𝑓𝑗))
2923, 24, 26, 28xrletrid 12888 . . . . . 6 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) = (𝐴𝑗))
307, 13, 14, 29syl21anc 835 . . . . 5 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → (𝑓𝑗) = (𝐴𝑗))
312, 6, 30eqfnfvd 6909 . . . 4 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 = 𝐴)
32 velsn 4583 . . . . . 6 (𝑓 ∈ {𝐴} ↔ 𝑓 = 𝐴)
3332bicomi 223 . . . . 5 (𝑓 = 𝐴𝑓 ∈ {𝐴})
3433biimpi 215 . . . 4 (𝑓 = 𝐴𝑓 ∈ {𝐴})
3531, 34syl 17 . . 3 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 ∈ {𝐴})
3635ssd 42600 . 2 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ⊆ {𝐴})
373elexd 3451 . . . . 5 (𝜑𝐴 ∈ V)
3816ffvelrnda 6958 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3938leidd 11541 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
4038, 38, 38, 39, 39eliccd 43013 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘)))
4140ralrimiva 3110 . . . . 5 (𝜑 → ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘)))
4237, 5, 413jca 1127 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘))))
43 elixp2 8672 . . . 4 (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ (𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘))))
4442, 43sylibr 233 . . 3 (𝜑𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)))
45 snssg 4724 . . . 4 (𝐴 ∈ (ℝ ↑m 𝑋) → (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
463, 45syl 17 . . 3 (𝜑 → (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
4744, 46mpbid 231 . 2 (𝜑 → {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)))
4836, 47eqssd 3943 1 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066  Vcvv 3431  wss 3892  {csn 4567   class class class wbr 5079   Fn wfn 6427  wf 6428  cfv 6432  (class class class)co 7271  m cmap 8598  Xcixp 8668  cr 10871  *cxr 11009  cle 11011  [,]cicc 13081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-pre-lttri 10946  ax-pre-lttrn 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825  df-er 8481  df-map 8600  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-icc 13085
This theorem is referenced by:  snvonmbl  44195  vonsn  44200
  Copyright terms: Public domain W3C validator