Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxsnicc Structured version   Visualization version   GIF version

Theorem rrxsnicc 44531
Description: A multidimensional singleton expressed as a multidimensional closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
rrxsnicc.1 (𝜑𝐴 ∈ (ℝ ↑m 𝑋))
Assertion
Ref Expression
rrxsnicc (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
Distinct variable groups:   𝐴,𝑘   𝑘,𝑋   𝜑,𝑘

Proof of Theorem rrxsnicc
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpfn 8841 . . . . . 6 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) → 𝑓 Fn 𝑋)
21adantl 482 . . . . 5 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 Fn 𝑋)
3 rrxsnicc.1 . . . . . . 7 (𝜑𝐴 ∈ (ℝ ↑m 𝑋))
4 elmapfn 8803 . . . . . . 7 (𝐴 ∈ (ℝ ↑m 𝑋) → 𝐴 Fn 𝑋)
53, 4syl 17 . . . . . 6 (𝜑𝐴 Fn 𝑋)
65adantr 481 . . . . 5 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝐴 Fn 𝑋)
7 simpll 765 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝜑)
8 fveq2 6842 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
98, 8oveq12d 7375 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐴𝑘)[,](𝐴𝑘)) = ((𝐴𝑗)[,](𝐴𝑗)))
109cbvixpv 8853 . . . . . . . . 9 X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))
1110eleq2i 2829 . . . . . . . 8 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
1211biimpi 215 . . . . . . 7 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) → 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
1312ad2antlr 725 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
14 simpr 485 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝑗𝑋)
15 elmapi 8787 . . . . . . . . . . . . 13 (𝐴 ∈ (ℝ ↑m 𝑋) → 𝐴:𝑋⟶ℝ)
163, 15syl 17 . . . . . . . . . . . 12 (𝜑𝐴:𝑋⟶ℝ)
1716ffvelcdmda 7035 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1817adantlr 713 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1918, 18iccssred 13351 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → ((𝐴𝑗)[,](𝐴𝑗)) ⊆ ℝ)
20 fvixp2 43409 . . . . . . . . . 10 ((𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗)))
2120adantll 712 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗)))
2219, 21sseldd 3945 . . . . . . . 8 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ℝ)
2322rexrd 11205 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ℝ*)
2418rexrd 11205 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ∈ ℝ*)
25 iccleub 13319 . . . . . . . 8 (((𝐴𝑗) ∈ ℝ* ∧ (𝐴𝑗) ∈ ℝ* ∧ (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗))) → (𝑓𝑗) ≤ (𝐴𝑗))
2624, 24, 21, 25syl3anc 1371 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ≤ (𝐴𝑗))
27 iccgelb 13320 . . . . . . . 8 (((𝐴𝑗) ∈ ℝ* ∧ (𝐴𝑗) ∈ ℝ* ∧ (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗))) → (𝐴𝑗) ≤ (𝑓𝑗))
2824, 24, 21, 27syl3anc 1371 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ≤ (𝑓𝑗))
2923, 24, 26, 28xrletrid 13074 . . . . . 6 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) = (𝐴𝑗))
307, 13, 14, 29syl21anc 836 . . . . 5 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → (𝑓𝑗) = (𝐴𝑗))
312, 6, 30eqfnfvd 6985 . . . 4 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 = 𝐴)
32 velsn 4602 . . . . . 6 (𝑓 ∈ {𝐴} ↔ 𝑓 = 𝐴)
3332bicomi 223 . . . . 5 (𝑓 = 𝐴𝑓 ∈ {𝐴})
3433biimpi 215 . . . 4 (𝑓 = 𝐴𝑓 ∈ {𝐴})
3531, 34syl 17 . . 3 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 ∈ {𝐴})
3635ssd 43280 . 2 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ⊆ {𝐴})
373elexd 3465 . . . . 5 (𝜑𝐴 ∈ V)
3816ffvelcdmda 7035 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3938leidd 11721 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
4038, 38, 38, 39, 39eliccd 43732 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘)))
4140ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘)))
4237, 5, 413jca 1128 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘))))
43 elixp2 8839 . . . 4 (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ (𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘))))
4442, 43sylibr 233 . . 3 (𝜑𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)))
45 snssg 4744 . . . 4 (𝐴 ∈ (ℝ ↑m 𝑋) → (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
463, 45syl 17 . . 3 (𝜑 → (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
4744, 46mpbid 231 . 2 (𝜑 → {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)))
4836, 47eqssd 3961 1 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  wss 3910  {csn 4586   class class class wbr 5105   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  Xcixp 8835  cr 11050  *cxr 11188  cle 11190  [,]cicc 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-pre-lttri 11125  ax-pre-lttrn 11126
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-icc 13271
This theorem is referenced by:  snvonmbl  44917  vonsn  44922
  Copyright terms: Public domain W3C validator