Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salrestss | Structured version Visualization version GIF version |
Description: A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
Ref | Expression |
---|---|
salrestss.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salrestss.2 | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
Ref | Expression |
---|---|
salrestss | ⊢ (𝜑 → (𝑆 ↾t 𝐸) ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑥 ∈ (𝑆 ↾t 𝐸)) | |
2 | salrestss.1 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑆 ∈ SAlg) |
4 | salrestss.2 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝑆) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝐸 ∈ 𝑆) |
6 | elrest 17208 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝑥 ∈ (𝑆 ↾t 𝐸) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸))) | |
7 | 3, 5, 6 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → (𝑥 ∈ (𝑆 ↾t 𝐸) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸))) |
8 | 1, 7 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸)) |
9 | simprr 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 = (𝑦 ∩ 𝐸)) | |
10 | 2 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑆 ∈ SAlg) |
11 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
12 | 4 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐸 ∈ 𝑆) |
13 | 10, 11, 12 | salincld 44128 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑦 ∩ 𝐸) ∈ 𝑆) |
14 | 13 | adantrr 714 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → (𝑦 ∩ 𝐸) ∈ 𝑆) |
15 | 9, 14 | eqeltrd 2838 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 ∈ 𝑆) |
16 | 15 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 ∈ 𝑆) |
17 | 8, 16 | rexlimddv 3155 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑥 ∈ 𝑆) |
18 | 17 | ssd 42851 | 1 ⊢ (𝜑 → (𝑆 ↾t 𝐸) ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3071 ∩ cin 3896 ⊆ wss 3897 (class class class)co 7315 ↾t crest 17201 SAlgcsalg 44086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-inf2 9470 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-rest 17203 df-salg 44087 |
This theorem is referenced by: smfdmmblpimne 44613 smfdivdmmbl2 44617 |
Copyright terms: Public domain | W3C validator |