Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salrestss Structured version   Visualization version   GIF version

Theorem salrestss 46282
Description: A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
salrestss.1 (𝜑𝑆 ∈ SAlg)
salrestss.2 (𝜑𝐸𝑆)
Assertion
Ref Expression
salrestss (𝜑 → (𝑆t 𝐸) ⊆ 𝑆)

Proof of Theorem salrestss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝑥 ∈ (𝑆t 𝐸))
2 salrestss.1 . . . . . 6 (𝜑𝑆 ∈ SAlg)
32adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝑆 ∈ SAlg)
4 salrestss.2 . . . . . 6 (𝜑𝐸𝑆)
54adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝐸𝑆)
6 elrest 17487 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝑥 ∈ (𝑆t 𝐸) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐸)))
73, 5, 6syl2anc 583 . . . 4 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → (𝑥 ∈ (𝑆t 𝐸) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐸)))
81, 7mpbid 232 . . 3 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → ∃𝑦𝑆 𝑥 = (𝑦𝐸))
9 simprr 772 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → 𝑥 = (𝑦𝐸))
102adantr 480 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑆 ∈ SAlg)
11 simpr 484 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑦𝑆)
124adantr 480 . . . . . . 7 ((𝜑𝑦𝑆) → 𝐸𝑆)
1310, 11, 12salincld 46273 . . . . . 6 ((𝜑𝑦𝑆) → (𝑦𝐸) ∈ 𝑆)
1413adantrr 716 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → (𝑦𝐸) ∈ 𝑆)
159, 14eqeltrd 2844 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → 𝑥𝑆)
1615adantlr 714 . . 3 (((𝜑𝑥 ∈ (𝑆t 𝐸)) ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → 𝑥𝑆)
178, 16rexlimddv 3167 . 2 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝑥𝑆)
1817ssd 44982 1 (𝜑 → (𝑆t 𝐸) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  cin 3975  wss 3976  (class class class)co 7448  t crest 17480  SAlgcsalg 46229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-rest 17482  df-salg 46230
This theorem is referenced by:  smfdmmblpimne  46758  smfdivdmmbl2  46762  smfsupdmmbllem  46765  smfinfdmmbllem  46769
  Copyright terms: Public domain W3C validator