Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salrestss Structured version   Visualization version   GIF version

Theorem salrestss 46390
Description: A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
salrestss.1 (𝜑𝑆 ∈ SAlg)
salrestss.2 (𝜑𝐸𝑆)
Assertion
Ref Expression
salrestss (𝜑 → (𝑆t 𝐸) ⊆ 𝑆)

Proof of Theorem salrestss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝑥 ∈ (𝑆t 𝐸))
2 salrestss.1 . . . . . 6 (𝜑𝑆 ∈ SAlg)
32adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝑆 ∈ SAlg)
4 salrestss.2 . . . . . 6 (𝜑𝐸𝑆)
54adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝐸𝑆)
6 elrest 17441 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝑥 ∈ (𝑆t 𝐸) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐸)))
73, 5, 6syl2anc 584 . . . 4 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → (𝑥 ∈ (𝑆t 𝐸) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐸)))
81, 7mpbid 232 . . 3 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → ∃𝑦𝑆 𝑥 = (𝑦𝐸))
9 simprr 772 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → 𝑥 = (𝑦𝐸))
102adantr 480 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑆 ∈ SAlg)
11 simpr 484 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑦𝑆)
124adantr 480 . . . . . . 7 ((𝜑𝑦𝑆) → 𝐸𝑆)
1310, 11, 12salincld 46381 . . . . . 6 ((𝜑𝑦𝑆) → (𝑦𝐸) ∈ 𝑆)
1413adantrr 717 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → (𝑦𝐸) ∈ 𝑆)
159, 14eqeltrd 2834 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → 𝑥𝑆)
1615adantlr 715 . . 3 (((𝜑𝑥 ∈ (𝑆t 𝐸)) ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → 𝑥𝑆)
178, 16rexlimddv 3147 . 2 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝑥𝑆)
1817ssd 45104 1 (𝜑 → (𝑆t 𝐸) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  cin 3925  wss 3926  (class class class)co 7405  t crest 17434  SAlgcsalg 46337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-rest 17436  df-salg 46338
This theorem is referenced by:  smfdmmblpimne  46866  smfdivdmmbl2  46870  smfsupdmmbllem  46873  smfinfdmmbllem  46877
  Copyright terms: Public domain W3C validator