Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salrestss Structured version   Visualization version   GIF version

Theorem salrestss 46366
Description: A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
salrestss.1 (𝜑𝑆 ∈ SAlg)
salrestss.2 (𝜑𝐸𝑆)
Assertion
Ref Expression
salrestss (𝜑 → (𝑆t 𝐸) ⊆ 𝑆)

Proof of Theorem salrestss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝑥 ∈ (𝑆t 𝐸))
2 salrestss.1 . . . . . 6 (𝜑𝑆 ∈ SAlg)
32adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝑆 ∈ SAlg)
4 salrestss.2 . . . . . 6 (𝜑𝐸𝑆)
54adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝐸𝑆)
6 elrest 17397 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝑥 ∈ (𝑆t 𝐸) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐸)))
73, 5, 6syl2anc 584 . . . 4 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → (𝑥 ∈ (𝑆t 𝐸) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐸)))
81, 7mpbid 232 . . 3 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → ∃𝑦𝑆 𝑥 = (𝑦𝐸))
9 simprr 772 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → 𝑥 = (𝑦𝐸))
102adantr 480 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑆 ∈ SAlg)
11 simpr 484 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑦𝑆)
124adantr 480 . . . . . . 7 ((𝜑𝑦𝑆) → 𝐸𝑆)
1310, 11, 12salincld 46357 . . . . . 6 ((𝜑𝑦𝑆) → (𝑦𝐸) ∈ 𝑆)
1413adantrr 717 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → (𝑦𝐸) ∈ 𝑆)
159, 14eqeltrd 2829 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → 𝑥𝑆)
1615adantlr 715 . . 3 (((𝜑𝑥 ∈ (𝑆t 𝐸)) ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → 𝑥𝑆)
178, 16rexlimddv 3141 . 2 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝑥𝑆)
1817ssd 45081 1 (𝜑 → (𝑆t 𝐸) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  cin 3916  wss 3917  (class class class)co 7390  t crest 17390  SAlgcsalg 46313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-rest 17392  df-salg 46314
This theorem is referenced by:  smfdmmblpimne  46842  smfdivdmmbl2  46846  smfsupdmmbllem  46849  smfinfdmmbllem  46853
  Copyright terms: Public domain W3C validator