Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salrestss | Structured version Visualization version GIF version |
Description: A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
Ref | Expression |
---|---|
salrestss.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salrestss.2 | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
Ref | Expression |
---|---|
salrestss | ⊢ (𝜑 → (𝑆 ↾t 𝐸) ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑥 ∈ (𝑆 ↾t 𝐸)) | |
2 | salrestss.1 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑆 ∈ SAlg) |
4 | salrestss.2 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝑆) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝐸 ∈ 𝑆) |
6 | elrest 17173 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝑥 ∈ (𝑆 ↾t 𝐸) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸))) | |
7 | 3, 5, 6 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → (𝑥 ∈ (𝑆 ↾t 𝐸) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸))) |
8 | 1, 7 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸)) |
9 | simprr 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 = (𝑦 ∩ 𝐸)) | |
10 | 2 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑆 ∈ SAlg) |
11 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
12 | 4 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐸 ∈ 𝑆) |
13 | 10, 11, 12 | salincld 43933 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑦 ∩ 𝐸) ∈ 𝑆) |
14 | 13 | adantrr 714 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → (𝑦 ∩ 𝐸) ∈ 𝑆) |
15 | 9, 14 | eqeltrd 2836 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 ∈ 𝑆) |
16 | 15 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 ∈ 𝑆) |
17 | 8, 16 | rexlimddv 3154 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑥 ∈ 𝑆) |
18 | 17 | ssd 42661 | 1 ⊢ (𝜑 → (𝑆 ↾t 𝐸) ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1538 ∈ wcel 2103 ∃wrex 3070 ∩ cin 3890 ⊆ wss 3891 (class class class)co 7303 ↾t crest 17166 SAlgcsalg 43891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-rep 5217 ax-sep 5231 ax-nul 5238 ax-pow 5296 ax-pr 5360 ax-un 7616 ax-inf2 9435 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3225 df-rab 3226 df-v 3438 df-sbc 3721 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4844 df-int 4886 df-iun 4932 df-br 5081 df-opab 5143 df-mpt 5164 df-tr 5198 df-id 5496 df-eprel 5502 df-po 5510 df-so 5511 df-fr 5551 df-we 5553 df-xp 5602 df-rel 5603 df-cnv 5604 df-co 5605 df-dm 5606 df-rn 5607 df-res 5608 df-ima 5609 df-pred 6213 df-ord 6280 df-on 6281 df-lim 6282 df-suc 6283 df-iota 6406 df-fun 6456 df-fn 6457 df-f 6458 df-f1 6459 df-fo 6460 df-f1o 6461 df-fv 6462 df-ov 7306 df-oprab 7307 df-mpo 7308 df-om 7741 df-2nd 7860 df-frecs 8125 df-wrecs 8156 df-recs 8230 df-rdg 8269 df-1o 8325 df-er 8526 df-en 8762 df-dom 8763 df-sdom 8764 df-fin 8765 df-rest 17168 df-salg 43892 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |