| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salrestss | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| Ref | Expression |
|---|---|
| salrestss.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| salrestss.2 | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| salrestss | ⊢ (𝜑 → (𝑆 ↾t 𝐸) ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑥 ∈ (𝑆 ↾t 𝐸)) | |
| 2 | salrestss.1 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑆 ∈ SAlg) |
| 4 | salrestss.2 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝑆) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝐸 ∈ 𝑆) |
| 6 | elrest 17331 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝑥 ∈ (𝑆 ↾t 𝐸) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸))) | |
| 7 | 3, 5, 6 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → (𝑥 ∈ (𝑆 ↾t 𝐸) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸))) |
| 8 | 1, 7 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸)) |
| 9 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 = (𝑦 ∩ 𝐸)) | |
| 10 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑆 ∈ SAlg) |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 12 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐸 ∈ 𝑆) |
| 13 | 10, 11, 12 | salincld 46460 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑦 ∩ 𝐸) ∈ 𝑆) |
| 14 | 13 | adantrr 717 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → (𝑦 ∩ 𝐸) ∈ 𝑆) |
| 15 | 9, 14 | eqeltrd 2831 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 ∈ 𝑆) |
| 16 | 15 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 ∈ 𝑆) |
| 17 | 8, 16 | rexlimddv 3139 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑥 ∈ 𝑆) |
| 18 | 17 | ssd 45187 | 1 ⊢ (𝜑 → (𝑆 ↾t 𝐸) ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∩ cin 3896 ⊆ wss 3897 (class class class)co 7346 ↾t crest 17324 SAlgcsalg 46416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-rest 17326 df-salg 46417 |
| This theorem is referenced by: smfdmmblpimne 46945 smfdivdmmbl2 46949 smfsupdmmbllem 46952 smfinfdmmbllem 46956 |
| Copyright terms: Public domain | W3C validator |