Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salrestss Structured version   Visualization version   GIF version

Theorem salrestss 44137
Description: A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
salrestss.1 (𝜑𝑆 ∈ SAlg)
salrestss.2 (𝜑𝐸𝑆)
Assertion
Ref Expression
salrestss (𝜑 → (𝑆t 𝐸) ⊆ 𝑆)

Proof of Theorem salrestss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . 4 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝑥 ∈ (𝑆t 𝐸))
2 salrestss.1 . . . . . 6 (𝜑𝑆 ∈ SAlg)
32adantr 481 . . . . 5 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝑆 ∈ SAlg)
4 salrestss.2 . . . . . 6 (𝜑𝐸𝑆)
54adantr 481 . . . . 5 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝐸𝑆)
6 elrest 17208 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → (𝑥 ∈ (𝑆t 𝐸) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐸)))
73, 5, 6syl2anc 584 . . . 4 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → (𝑥 ∈ (𝑆t 𝐸) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐸)))
81, 7mpbid 231 . . 3 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → ∃𝑦𝑆 𝑥 = (𝑦𝐸))
9 simprr 770 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → 𝑥 = (𝑦𝐸))
102adantr 481 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑆 ∈ SAlg)
11 simpr 485 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑦𝑆)
124adantr 481 . . . . . . 7 ((𝜑𝑦𝑆) → 𝐸𝑆)
1310, 11, 12salincld 44128 . . . . . 6 ((𝜑𝑦𝑆) → (𝑦𝐸) ∈ 𝑆)
1413adantrr 714 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → (𝑦𝐸) ∈ 𝑆)
159, 14eqeltrd 2838 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → 𝑥𝑆)
1615adantlr 712 . . 3 (((𝜑𝑥 ∈ (𝑆t 𝐸)) ∧ (𝑦𝑆𝑥 = (𝑦𝐸))) → 𝑥𝑆)
178, 16rexlimddv 3155 . 2 ((𝜑𝑥 ∈ (𝑆t 𝐸)) → 𝑥𝑆)
1817ssd 42851 1 (𝜑 → (𝑆t 𝐸) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wrex 3071  cin 3896  wss 3897  (class class class)co 7315  t crest 17201  SAlgcsalg 44086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-inf2 9470
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-1o 8344  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-fin 8785  df-rest 17203  df-salg 44087
This theorem is referenced by:  smfdmmblpimne  44613  smfdivdmmbl2  44617
  Copyright terms: Public domain W3C validator