| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salrestss | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| Ref | Expression |
|---|---|
| salrestss.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| salrestss.2 | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| salrestss | ⊢ (𝜑 → (𝑆 ↾t 𝐸) ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑥 ∈ (𝑆 ↾t 𝐸)) | |
| 2 | salrestss.1 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑆 ∈ SAlg) |
| 4 | salrestss.2 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝑆) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝐸 ∈ 𝑆) |
| 6 | elrest 17397 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝑥 ∈ (𝑆 ↾t 𝐸) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸))) | |
| 7 | 3, 5, 6 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → (𝑥 ∈ (𝑆 ↾t 𝐸) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸))) |
| 8 | 1, 7 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸)) |
| 9 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 = (𝑦 ∩ 𝐸)) | |
| 10 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑆 ∈ SAlg) |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 12 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐸 ∈ 𝑆) |
| 13 | 10, 11, 12 | salincld 46357 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑦 ∩ 𝐸) ∈ 𝑆) |
| 14 | 13 | adantrr 717 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → (𝑦 ∩ 𝐸) ∈ 𝑆) |
| 15 | 9, 14 | eqeltrd 2829 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 ∈ 𝑆) |
| 16 | 15 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 ∈ 𝑆) |
| 17 | 8, 16 | rexlimddv 3141 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑥 ∈ 𝑆) |
| 18 | 17 | ssd 45081 | 1 ⊢ (𝜑 → (𝑆 ↾t 𝐸) ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ∩ cin 3916 ⊆ wss 3917 (class class class)co 7390 ↾t crest 17390 SAlgcsalg 46313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-rest 17392 df-salg 46314 |
| This theorem is referenced by: smfdmmblpimne 46842 smfdivdmmbl2 46846 smfsupdmmbllem 46849 smfinfdmmbllem 46853 |
| Copyright terms: Public domain | W3C validator |