![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salrestss | Structured version Visualization version GIF version |
Description: A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
Ref | Expression |
---|---|
salrestss.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
salrestss.2 | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
Ref | Expression |
---|---|
salrestss | ⊢ (𝜑 → (𝑆 ↾t 𝐸) ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑥 ∈ (𝑆 ↾t 𝐸)) | |
2 | salrestss.1 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑆 ∈ SAlg) |
4 | salrestss.2 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝑆) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝐸 ∈ 𝑆) |
6 | elrest 17375 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (𝑥 ∈ (𝑆 ↾t 𝐸) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸))) | |
7 | 3, 5, 6 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → (𝑥 ∈ (𝑆 ↾t 𝐸) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸))) |
8 | 1, 7 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐸)) |
9 | simprr 771 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 = (𝑦 ∩ 𝐸)) | |
10 | 2 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑆 ∈ SAlg) |
11 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
12 | 4 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐸 ∈ 𝑆) |
13 | 10, 11, 12 | salincld 45147 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑦 ∩ 𝐸) ∈ 𝑆) |
14 | 13 | adantrr 715 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → (𝑦 ∩ 𝐸) ∈ 𝑆) |
15 | 9, 14 | eqeltrd 2833 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 ∈ 𝑆) |
16 | 15 | adantlr 713 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) ∧ (𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐸))) → 𝑥 ∈ 𝑆) |
17 | 8, 16 | rexlimddv 3161 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆 ↾t 𝐸)) → 𝑥 ∈ 𝑆) |
18 | 17 | ssd 43851 | 1 ⊢ (𝜑 → (𝑆 ↾t 𝐸) ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ∩ cin 3947 ⊆ wss 3948 (class class class)co 7411 ↾t crest 17368 SAlgcsalg 45103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-rest 17370 df-salg 45104 |
This theorem is referenced by: smfdmmblpimne 45632 smfdivdmmbl2 45636 smfsupdmmbllem 45639 smfinfdmmbllem 45643 |
Copyright terms: Public domain | W3C validator |