HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanss2 Structured version   Visualization version   GIF version

Theorem spanss2 31324
Description: A subset of Hilbert space is included in its span. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
spanss2 (𝐴 ⊆ ℋ → 𝐴 ⊆ (span‘𝐴))

Proof of Theorem spanss2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4926 . 2 𝐴 {𝑥S𝐴𝑥}
2 spanval 31312 . 2 (𝐴 ⊆ ℋ → (span‘𝐴) = {𝑥S𝐴𝑥})
31, 2sseqtrrid 3987 1 (𝐴 ⊆ ℋ → 𝐴 ⊆ (span‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  {crab 3402  wss 3911   cint 4906  cfv 6499  chba 30898   S csh 30907  spancspn 30911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-1cn 11102  ax-addcl 11104  ax-hilex 30978  ax-hfvadd 30979  ax-hv0cl 30982  ax-hfvmul 30984
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-map 8778  df-nn 12163  df-hlim 30951  df-sh 31186  df-ch 31200  df-span 31288
This theorem is referenced by:  shsupunss  31325  spanuni  31523
  Copyright terms: Public domain W3C validator