MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssid Structured version   Visualization version   GIF version

Theorem mrcssid 17568
Description: The closure of a set is a superset. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrClsβ€˜πΆ)
Assertion
Ref Expression
mrcssid ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘ˆ βŠ† 𝑋) β†’ π‘ˆ βŠ† (πΉβ€˜π‘ˆ))

Proof of Theorem mrcssid
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4963 . 2 π‘ˆ βŠ† ∩ {𝑠 ∈ 𝐢 ∣ π‘ˆ βŠ† 𝑠}
2 mrcfval.f . . 3 𝐹 = (mrClsβ€˜πΆ)
32mrcval 17561 . 2 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘ˆ βŠ† 𝑋) β†’ (πΉβ€˜π‘ˆ) = ∩ {𝑠 ∈ 𝐢 ∣ π‘ˆ βŠ† 𝑠})
41, 3sseqtrrid 4030 1 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ π‘ˆ βŠ† 𝑋) β†’ π‘ˆ βŠ† (πΉβ€˜π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  {crab 3426   βŠ† wss 3943  βˆ© cint 4943  β€˜cfv 6536  Moorecmre 17533  mrClscmrc 17534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-mre 17537  df-mrc 17538
This theorem is referenced by:  mrcidb2  17569  mrcuni  17572  mrcssidd  17576  mrelatlub  18525  gsumwspan  18769  symggen  19388  mrccss  21583  ismrcd2  41996  ismrc  41998  mrefg2  42004
  Copyright terms: Public domain W3C validator