Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclssidN Structured version   Visualization version   GIF version

Theorem pclssidN 39874
Description: A set of atoms is included in its projective subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclss.a 𝐴 = (Atoms‘𝐾)
pclss.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclssidN ((𝐾𝑉𝑋𝐴) → 𝑋 ⊆ (𝑈𝑋))

Proof of Theorem pclssidN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4919 . 2 𝑋 {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦}
2 pclss.a . . 3 𝐴 = (Atoms‘𝐾)
3 eqid 2729 . . 3 (PSubSp‘𝐾) = (PSubSp‘𝐾)
4 pclss.c . . 3 𝑈 = (PCl‘𝐾)
52, 3, 4pclvalN 39869 . 2 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦 ∈ (PSubSp‘𝐾) ∣ 𝑋𝑦})
61, 5sseqtrrid 3981 1 ((𝐾𝑉𝑋𝐴) → 𝑋 ⊆ (𝑈𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  wss 3905   cint 4899  cfv 6486  Atomscatm 39241  PSubSpcpsubsp 39475  PClcpclN 39866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-psubsp 39482  df-pclN 39867
This theorem is referenced by:  pclunN  39877  pcl0bN  39902  pclfinclN  39929
  Copyright terms: Public domain W3C validator