Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclssidN Structured version   Visualization version   GIF version

Theorem pclssidN 38761
Description: A set of atoms is included in its projective subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclss.a 𝐴 = (Atomsβ€˜πΎ)
pclss.c π‘ˆ = (PClβ€˜πΎ)
Assertion
Ref Expression
pclssidN ((𝐾 ∈ 𝑉 ∧ 𝑋 βŠ† 𝐴) β†’ 𝑋 βŠ† (π‘ˆβ€˜π‘‹))

Proof of Theorem pclssidN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4970 . 2 𝑋 βŠ† ∩ {𝑦 ∈ (PSubSpβ€˜πΎ) ∣ 𝑋 βŠ† 𝑦}
2 pclss.a . . 3 𝐴 = (Atomsβ€˜πΎ)
3 eqid 2732 . . 3 (PSubSpβ€˜πΎ) = (PSubSpβ€˜πΎ)
4 pclss.c . . 3 π‘ˆ = (PClβ€˜πΎ)
52, 3, 4pclvalN 38756 . 2 ((𝐾 ∈ 𝑉 ∧ 𝑋 βŠ† 𝐴) β†’ (π‘ˆβ€˜π‘‹) = ∩ {𝑦 ∈ (PSubSpβ€˜πΎ) ∣ 𝑋 βŠ† 𝑦})
61, 5sseqtrrid 4035 1 ((𝐾 ∈ 𝑉 ∧ 𝑋 βŠ† 𝐴) β†’ 𝑋 βŠ† (π‘ˆβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432   βŠ† wss 3948  βˆ© cint 4950  β€˜cfv 6543  Atomscatm 38128  PSubSpcpsubsp 38362  PClcpclN 38753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-psubsp 38369  df-pclN 38754
This theorem is referenced by:  pclunN  38764  pcl0bN  38789  pclfinclN  38816
  Copyright terms: Public domain W3C validator