| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > igenss | Structured version Visualization version GIF version | ||
| Description: A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| igenval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| igenval.2 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| igenss | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintub 4916 | . 2 ⊢ 𝑆 ⊆ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} | |
| 2 | igenval.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 3 | igenval.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 4 | 2, 3 | igenval 38045 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 5 | 1, 4 | sseqtrrid 3979 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 ⊆ wss 3903 ∩ cint 4896 ran crn 5620 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 RingOpscrngo 37878 Idlcidl 37991 IdlGen cigen 38043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-grpo 30437 df-gid 30438 df-ablo 30489 df-rngo 37879 df-idl 37994 df-igen 38044 |
| This theorem is referenced by: igenval2 38050 isfldidl 38052 ispridlc 38054 |
| Copyright terms: Public domain | W3C validator |