Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenss Structured version   Visualization version   GIF version

Theorem igenss 38029
Description: A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
igenval.1 𝐺 = (1st𝑅)
igenval.2 𝑋 = ran 𝐺
Assertion
Ref Expression
igenss ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆))

Proof of Theorem igenss
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4926 . 2 𝑆 {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗}
2 igenval.1 . . 3 𝐺 = (1st𝑅)
3 igenval.2 . . 3 𝑋 = ran 𝐺
42, 3igenval 38028 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
51, 4sseqtrrid 3987 1 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  wss 3911   cint 4906  ran crn 5632  cfv 6499  (class class class)co 7369  1st c1st 7945  RingOpscrngo 37861  Idlcidl 37974   IdlGen cigen 38026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-grpo 30395  df-gid 30396  df-ablo 30447  df-rngo 37862  df-idl 37977  df-igen 38027
This theorem is referenced by:  igenval2  38033  isfldidl  38035  ispridlc  38037
  Copyright terms: Public domain W3C validator