Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > igenss | Structured version Visualization version GIF version |
Description: A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
igenval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
igenval.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
igenss | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintub 4897 | . 2 ⊢ 𝑆 ⊆ ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} | |
2 | igenval.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
3 | igenval.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | 2, 3 | igenval 36219 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
5 | 1, 4 | sseqtrrid 3974 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ∩ cint 4879 ran crn 5590 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 RingOpscrngo 36052 Idlcidl 36165 IdlGen cigen 36217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-grpo 28855 df-gid 28856 df-ablo 28907 df-rngo 36053 df-idl 36168 df-igen 36218 |
This theorem is referenced by: igenval2 36224 isfldidl 36226 ispridlc 36228 |
Copyright terms: Public domain | W3C validator |