HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ococin Structured version   Visualization version   GIF version

Theorem ococin 31428
Description: The double complement is the smallest closed subspace containing a subset of Hilbert space. Remark 3.12(B) of [Beran] p. 107. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ococin (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) = {𝑥C𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem ococin
StepHypRef Expression
1 helch 31263 . . . . . . . . 9 ℋ ∈ C
21jctl 523 . . . . . . . 8 (𝐴 ⊆ ℋ → ( ℋ ∈ C𝐴 ⊆ ℋ))
3 sseq2 4009 . . . . . . . . 9 (𝑥 = ℋ → (𝐴𝑥𝐴 ⊆ ℋ))
43elrab 3691 . . . . . . . 8 ( ℋ ∈ {𝑥C𝐴𝑥} ↔ ( ℋ ∈ C𝐴 ⊆ ℋ))
52, 4sylibr 234 . . . . . . 7 (𝐴 ⊆ ℋ → ℋ ∈ {𝑥C𝐴𝑥})
6 intss1 4962 . . . . . . 7 ( ℋ ∈ {𝑥C𝐴𝑥} → {𝑥C𝐴𝑥} ⊆ ℋ)
75, 6syl 17 . . . . . 6 (𝐴 ⊆ ℋ → {𝑥C𝐴𝑥} ⊆ ℋ)
8 ocss 31305 . . . . . 6 ( {𝑥C𝐴𝑥} ⊆ ℋ → (⊥‘ {𝑥C𝐴𝑥}) ⊆ ℋ)
97, 8syl 17 . . . . 5 (𝐴 ⊆ ℋ → (⊥‘ {𝑥C𝐴𝑥}) ⊆ ℋ)
10 ocss 31305 . . . . 5 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
119, 10jca 511 . . . 4 (𝐴 ⊆ ℋ → ((⊥‘ {𝑥C𝐴𝑥}) ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ))
12 ssintub 4965 . . . . 5 𝐴 {𝑥C𝐴𝑥}
13 occon 31307 . . . . . 6 ((𝐴 ⊆ ℋ ∧ {𝑥C𝐴𝑥} ⊆ ℋ) → (𝐴 {𝑥C𝐴𝑥} → (⊥‘ {𝑥C𝐴𝑥}) ⊆ (⊥‘𝐴)))
147, 13mpdan 687 . . . . 5 (𝐴 ⊆ ℋ → (𝐴 {𝑥C𝐴𝑥} → (⊥‘ {𝑥C𝐴𝑥}) ⊆ (⊥‘𝐴)))
1512, 14mpi 20 . . . 4 (𝐴 ⊆ ℋ → (⊥‘ {𝑥C𝐴𝑥}) ⊆ (⊥‘𝐴))
16 occon 31307 . . . 4 (((⊥‘ {𝑥C𝐴𝑥}) ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → ((⊥‘ {𝑥C𝐴𝑥}) ⊆ (⊥‘𝐴) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘ {𝑥C𝐴𝑥}))))
1711, 15, 16sylc 65 . . 3 (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘ {𝑥C𝐴𝑥})))
18 ssrab2 4079 . . . . 5 {𝑥C𝐴𝑥} ⊆ C
193rspcev 3621 . . . . . . 7 (( ℋ ∈ C𝐴 ⊆ ℋ) → ∃𝑥C 𝐴𝑥)
201, 19mpan 690 . . . . . 6 (𝐴 ⊆ ℋ → ∃𝑥C 𝐴𝑥)
21 rabn0 4388 . . . . . 6 ({𝑥C𝐴𝑥} ≠ ∅ ↔ ∃𝑥C 𝐴𝑥)
2220, 21sylibr 234 . . . . 5 (𝐴 ⊆ ℋ → {𝑥C𝐴𝑥} ≠ ∅)
23 chintcl 31352 . . . . 5 (({𝑥C𝐴𝑥} ⊆ C ∧ {𝑥C𝐴𝑥} ≠ ∅) → {𝑥C𝐴𝑥} ∈ C )
2418, 22, 23sylancr 587 . . . 4 (𝐴 ⊆ ℋ → {𝑥C𝐴𝑥} ∈ C )
25 ococ 31426 . . . 4 ( {𝑥C𝐴𝑥} ∈ C → (⊥‘(⊥‘ {𝑥C𝐴𝑥})) = {𝑥C𝐴𝑥})
2624, 25syl 17 . . 3 (𝐴 ⊆ ℋ → (⊥‘(⊥‘ {𝑥C𝐴𝑥})) = {𝑥C𝐴𝑥})
2717, 26sseqtrd 4019 . 2 (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) ⊆ {𝑥C𝐴𝑥})
28 occl 31324 . . . . 5 ((⊥‘𝐴) ⊆ ℋ → (⊥‘(⊥‘𝐴)) ∈ C )
2910, 28syl 17 . . . 4 (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) ∈ C )
30 ococss 31313 . . . 4 (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴)))
31 sseq2 4009 . . . . 5 (𝑥 = (⊥‘(⊥‘𝐴)) → (𝐴𝑥𝐴 ⊆ (⊥‘(⊥‘𝐴))))
3231elrab 3691 . . . 4 ((⊥‘(⊥‘𝐴)) ∈ {𝑥C𝐴𝑥} ↔ ((⊥‘(⊥‘𝐴)) ∈ C𝐴 ⊆ (⊥‘(⊥‘𝐴))))
3329, 30, 32sylanbrc 583 . . 3 (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) ∈ {𝑥C𝐴𝑥})
34 intss1 4962 . . 3 ((⊥‘(⊥‘𝐴)) ∈ {𝑥C𝐴𝑥} → {𝑥C𝐴𝑥} ⊆ (⊥‘(⊥‘𝐴)))
3533, 34syl 17 . 2 (𝐴 ⊆ ℋ → {𝑥C𝐴𝑥} ⊆ (⊥‘(⊥‘𝐴)))
3627, 35eqssd 4000 1 (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) = {𝑥C𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  wrex 3069  {crab 3435  wss 3950  c0 4332   cint 4945  cfv 6560  chba 30939   C cch 30949  cort 30950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cc 10476  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236  ax-hilex 31019  ax-hfvadd 31020  ax-hvcom 31021  ax-hvass 31022  ax-hv0cl 31023  ax-hvaddid 31024  ax-hfvmul 31025  ax-hvmulid 31026  ax-hvmulass 31027  ax-hvdistr1 31028  ax-hvdistr2 31029  ax-hvmul0 31030  ax-hfi 31099  ax-his1 31102  ax-his2 31103  ax-his3 31104  ax-his4 31105  ax-hcompl 31222
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-omul 8512  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-acn 9983  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-cn 23236  df-cnp 23237  df-lm 23238  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cfil 25290  df-cau 25291  df-cmet 25292  df-grpo 30513  df-gid 30514  df-ginv 30515  df-gdiv 30516  df-ablo 30565  df-vc 30579  df-nv 30612  df-va 30615  df-ba 30616  df-sm 30617  df-0v 30618  df-vs 30619  df-nmcv 30620  df-ims 30621  df-dip 30721  df-ssp 30742  df-ph 30833  df-cbn 30883  df-hnorm 30988  df-hba 30989  df-hvsub 30991  df-hlim 30992  df-hcau 30993  df-sh 31227  df-ch 31241  df-oc 31272  df-ch0 31273
This theorem is referenced by:  hsupval2  31429  sshjval2  31431
  Copyright terms: Public domain W3C validator