| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ococin | Structured version Visualization version GIF version | ||
| Description: The double complement is the smallest closed subspace containing a subset of Hilbert space. Remark 3.12(B) of [Beran] p. 107. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ococin | ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) = ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | helch 31172 | . . . . . . . . 9 ⊢ ℋ ∈ Cℋ | |
| 2 | 1 | jctl 523 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℋ → ( ℋ ∈ Cℋ ∧ 𝐴 ⊆ ℋ)) |
| 3 | sseq2 3973 | . . . . . . . . 9 ⊢ (𝑥 = ℋ → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ℋ)) | |
| 4 | 3 | elrab 3659 | . . . . . . . 8 ⊢ ( ℋ ∈ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ↔ ( ℋ ∈ Cℋ ∧ 𝐴 ⊆ ℋ)) |
| 5 | 2, 4 | sylibr 234 | . . . . . . 7 ⊢ (𝐴 ⊆ ℋ → ℋ ∈ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) |
| 6 | intss1 4927 | . . . . . . 7 ⊢ ( ℋ ∈ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} → ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ℋ) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ℋ) |
| 8 | ocss 31214 | . . . . . 6 ⊢ (∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ℋ → (⊥‘∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) ⊆ ℋ) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → (⊥‘∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) ⊆ ℋ) |
| 10 | ocss 31214 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) | |
| 11 | 9, 10 | jca 511 | . . . 4 ⊢ (𝐴 ⊆ ℋ → ((⊥‘∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ)) |
| 12 | ssintub 4930 | . . . . 5 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} | |
| 13 | occon 31216 | . . . . . 6 ⊢ ((𝐴 ⊆ ℋ ∧ ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ⊆ ℋ) → (𝐴 ⊆ ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} → (⊥‘∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) ⊆ (⊥‘𝐴))) | |
| 14 | 7, 13 | mpdan 687 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → (𝐴 ⊆ ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} → (⊥‘∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) ⊆ (⊥‘𝐴))) |
| 15 | 12, 14 | mpi 20 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) ⊆ (⊥‘𝐴)) |
| 16 | occon 31216 | . . . 4 ⊢ (((⊥‘∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → ((⊥‘∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) ⊆ (⊥‘𝐴) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥})))) | |
| 17 | 11, 15, 16 | sylc 65 | . . 3 ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}))) |
| 18 | ssrab2 4043 | . . . . 5 ⊢ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ⊆ Cℋ | |
| 19 | 3 | rspcev 3588 | . . . . . . 7 ⊢ (( ℋ ∈ Cℋ ∧ 𝐴 ⊆ ℋ) → ∃𝑥 ∈ Cℋ 𝐴 ⊆ 𝑥) |
| 20 | 1, 19 | mpan 690 | . . . . . 6 ⊢ (𝐴 ⊆ ℋ → ∃𝑥 ∈ Cℋ 𝐴 ⊆ 𝑥) |
| 21 | rabn0 4352 | . . . . . 6 ⊢ ({𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ Cℋ 𝐴 ⊆ 𝑥) | |
| 22 | 20, 21 | sylibr 234 | . . . . 5 ⊢ (𝐴 ⊆ ℋ → {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ≠ ∅) |
| 23 | chintcl 31261 | . . . . 5 ⊢ (({𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ⊆ Cℋ ∧ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ≠ ∅) → ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ∈ Cℋ ) | |
| 24 | 18, 22, 23 | sylancr 587 | . . . 4 ⊢ (𝐴 ⊆ ℋ → ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ∈ Cℋ ) |
| 25 | ococ 31335 | . . . 4 ⊢ (∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ∈ Cℋ → (⊥‘(⊥‘∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥})) = ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) | |
| 26 | 24, 25 | syl 17 | . . 3 ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥})) = ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) |
| 27 | 17, 26 | sseqtrd 3983 | . 2 ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) ⊆ ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) |
| 28 | occl 31233 | . . . . 5 ⊢ ((⊥‘𝐴) ⊆ ℋ → (⊥‘(⊥‘𝐴)) ∈ Cℋ ) | |
| 29 | 10, 28 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) ∈ Cℋ ) |
| 30 | ococss 31222 | . . . 4 ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | |
| 31 | sseq2 3973 | . . . . 5 ⊢ (𝑥 = (⊥‘(⊥‘𝐴)) → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ (⊥‘(⊥‘𝐴)))) | |
| 32 | 31 | elrab 3659 | . . . 4 ⊢ ((⊥‘(⊥‘𝐴)) ∈ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ↔ ((⊥‘(⊥‘𝐴)) ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘(⊥‘𝐴)))) |
| 33 | 29, 30, 32 | sylanbrc 583 | . . 3 ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) ∈ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) |
| 34 | intss1 4927 | . . 3 ⊢ ((⊥‘(⊥‘𝐴)) ∈ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} → ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ⊆ (⊥‘(⊥‘𝐴))) | |
| 35 | 33, 34 | syl 17 | . 2 ⊢ (𝐴 ⊆ ℋ → ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥} ⊆ (⊥‘(⊥‘𝐴))) |
| 36 | 27, 35 | eqssd 3964 | 1 ⊢ (𝐴 ⊆ ℋ → (⊥‘(⊥‘𝐴)) = ∩ {𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3405 ⊆ wss 3914 ∅c0 4296 ∩ cint 4910 ‘cfv 6511 ℋchba 30848 Cℋ cch 30858 ⊥cort 30859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 ax-hilex 30928 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr1 30937 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his2 31012 ax-his3 31013 ax-his4 31014 ax-hcompl 31131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-cn 23114 df-cnp 23115 df-lm 23116 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cfil 25155 df-cau 25156 df-cmet 25157 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 df-dip 30630 df-ssp 30651 df-ph 30742 df-cbn 30792 df-hnorm 30897 df-hba 30898 df-hvsub 30900 df-hlim 30901 df-hcau 30902 df-sh 31136 df-ch 31150 df-oc 31181 df-ch0 31182 |
| This theorem is referenced by: hsupval2 31338 sshjval2 31340 |
| Copyright terms: Public domain | W3C validator |