![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sssigagen | Structured version Visualization version GIF version |
Description: A set is a subset of the sigma-algebra it generates. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
Ref | Expression |
---|---|
sssigagen | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (sigaGen‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintub 4728 | . 2 ⊢ 𝐴 ⊆ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} | |
2 | sigagenval 30815 | . 2 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | |
3 | 1, 2 | syl5sseqr 3872 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (sigaGen‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {crab 3093 ⊆ wss 3791 ∪ cuni 4671 ∩ cint 4710 ‘cfv 6135 sigAlgebracsiga 30782 sigaGencsigagen 30813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-int 4711 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-siga 30783 df-sigagen 30814 |
This theorem is referenced by: sssigagen2 30821 elsigagen 30822 elsigagen2 30823 sigagenid 30826 elsx 30869 imambfm 30936 cnmbfm 30937 elmbfmvol2 30941 sxbrsigalem3 30946 orvcoel 31136 |
Copyright terms: Public domain | W3C validator |