| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sssigagen | Structured version Visualization version GIF version | ||
| Description: A set is a subset of the sigma-algebra it generates. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
| Ref | Expression |
|---|---|
| sssigagen | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (sigaGen‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintub 4914 | . 2 ⊢ 𝐴 ⊆ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} | |
| 2 | sigagenval 34153 | . 2 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | |
| 3 | 1, 2 | sseqtrrid 3973 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (sigaGen‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 ∪ cuni 4856 ∩ cint 4895 ‘cfv 6481 sigAlgebracsiga 34121 sigaGencsigagen 34151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-siga 34122 df-sigagen 34152 |
| This theorem is referenced by: sssigagen2 34159 elsigagen 34160 elsigagen2 34161 sigagenid 34164 elsx 34207 imambfm 34275 cnmbfm 34276 elmbfmvol2 34280 sxbrsigalem3 34285 orvcoel 34475 |
| Copyright terms: Public domain | W3C validator |