Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssigagen Structured version   Visualization version   GIF version

Theorem sssigagen 34108
Description: A set is a subset of the sigma-algebra it generates. (Contributed by Thierry Arnoux, 24-Jan-2017.)
Assertion
Ref Expression
sssigagen (𝐴𝑉𝐴 ⊆ (sigaGen‘𝐴))

Proof of Theorem sssigagen
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4926 . 2 𝐴 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠}
2 sigagenval 34103 . 2 (𝐴𝑉 → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
31, 2sseqtrrid 3987 1 (𝐴𝑉𝐴 ⊆ (sigaGen‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {crab 3402  wss 3911   cuni 4867   cint 4906  cfv 6499  sigAlgebracsiga 34071  sigaGencsigagen 34101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-siga 34072  df-sigagen 34102
This theorem is referenced by:  sssigagen2  34109  elsigagen  34110  elsigagen2  34111  sigagenid  34114  elsx  34157  imambfm  34226  cnmbfm  34227  elmbfmvol2  34231  sxbrsigalem3  34236  orvcoel  34426
  Copyright terms: Public domain W3C validator