Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssigagen Structured version   Visualization version   GIF version

Theorem sssigagen 32409
Description: A set is a subset of the sigma-algebra it generates. (Contributed by Thierry Arnoux, 24-Jan-2017.)
Assertion
Ref Expression
sssigagen (𝐴𝑉𝐴 ⊆ (sigaGen‘𝐴))

Proof of Theorem sssigagen
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4918 . 2 𝐴 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠}
2 sigagenval 32404 . 2 (𝐴𝑉 → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
31, 2sseqtrrid 3988 1 (𝐴𝑉𝐴 ⊆ (sigaGen‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  {crab 3404  wss 3901   cuni 4856   cint 4898  cfv 6483  sigAlgebracsiga 32372  sigaGencsigagen 32402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-iota 6435  df-fun 6485  df-fv 6491  df-siga 32373  df-sigagen 32403
This theorem is referenced by:  sssigagen2  32410  elsigagen  32411  elsigagen2  32412  sigagenid  32415  elsx  32458  imambfm  32527  cnmbfm  32528  elmbfmvol2  32532  sxbrsigalem3  32537  orvcoel  32726
  Copyright terms: Public domain W3C validator