Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssigagen Structured version   Visualization version   GIF version

Theorem sssigagen 34181
Description: A set is a subset of the sigma-algebra it generates. (Contributed by Thierry Arnoux, 24-Jan-2017.)
Assertion
Ref Expression
sssigagen (𝐴𝑉𝐴 ⊆ (sigaGen‘𝐴))

Proof of Theorem sssigagen
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4947 . 2 𝐴 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠}
2 sigagenval 34176 . 2 (𝐴𝑉 → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
31, 2sseqtrrid 4007 1 (𝐴𝑉𝐴 ⊆ (sigaGen‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {crab 3420  wss 3931   cuni 4888   cint 4927  cfv 6536  sigAlgebracsiga 34144  sigaGencsigagen 34174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-siga 34145  df-sigagen 34175
This theorem is referenced by:  sssigagen2  34182  elsigagen  34183  elsigagen2  34184  sigagenid  34187  elsx  34230  imambfm  34299  cnmbfm  34300  elmbfmvol2  34304  sxbrsigalem3  34309  orvcoel  34499
  Copyright terms: Public domain W3C validator