Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochocss Structured version   Visualization version   GIF version

Theorem dochocss 41360
Description: Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
dochss.h 𝐻 = (LHyp‘𝐾)
dochss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochss.v 𝑉 = (Base‘𝑈)
dochss.o = ((ocH‘𝐾)‘𝑊)
Assertion
Ref Expression
dochocss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ⊆ ( ‘( 𝑋)))

Proof of Theorem dochocss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4930 . 2 𝑋 {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}
2 dochss.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2729 . . . . 5 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
4 dochss.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dochss.v . . . . 5 𝑉 = (Base‘𝑈)
6 dochss.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
72, 3, 4, 5, 6dochcl 41347 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊))
8 eqid 2729 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
98, 2, 3, 6dochvalr 41351 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))))
107, 9syldan 591 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( ‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))))
118, 2, 3, 4, 5, 6dochval2 41346 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))))
1211fveq2d 6862 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))))
13 eqid 2729 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
14 eqid 2729 . . . . . . . . . . 11 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1513, 2, 3, 4, 14dihf11 41261 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈))
1615adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈))
17 f1f1orn 6811 . . . . . . . . 9 (((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊))
1816, 17syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊))
19 hlop 39355 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
2019ad2antrr 726 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝐾 ∈ OP)
21 simpl 482 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22 ssrab2 4043 . . . . . . . . . . . 12 {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊)
2322a1i 11 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊))
24 eqid 2729 . . . . . . . . . . . . . . . 16 (1.‘𝐾) = (1.‘𝐾)
2524, 2, 3, 4, 5dih1 41280 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) = 𝑉)
2625adantr 480 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) = 𝑉)
27 f1fn 6757 . . . . . . . . . . . . . . . 16 (((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈) → ((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾))
2816, 27syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾))
2913, 24op1cl 39178 . . . . . . . . . . . . . . . 16 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
3020, 29syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (1.‘𝐾) ∈ (Base‘𝐾))
31 fnfvelrn 7052 . . . . . . . . . . . . . . 15 ((((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3228, 30, 31syl2anc 584 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3326, 32eqeltrrd 2829 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊))
34 simpr 484 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋𝑉)
35 sseq2 3973 . . . . . . . . . . . . . 14 (𝑧 = 𝑉 → (𝑋𝑧𝑋𝑉))
3635elrab 3659 . . . . . . . . . . . . 13 (𝑉 ∈ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ↔ (𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∧ 𝑋𝑉))
3733, 34, 36sylanbrc 583 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑉 ∈ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
3837ne0d 4305 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ≠ ∅)
392, 3dihintcl 41338 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ≠ ∅)) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊))
4021, 23, 38, 39syl12anc 836 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊))
41 f1ocnvdm 7260 . . . . . . . . . 10 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾))
4218, 40, 41syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾))
4313, 8opoccl 39187 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾))
4420, 42, 43syl2anc 584 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾))
45 f1ocnvfv1 7251 . . . . . . . 8 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾)) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4618, 44, 45syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4712, 46eqtrd 2764 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘( 𝑋)) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4847fveq2d 6862 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋))) = ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))))
4913, 8opococ 39188 . . . . . 6 ((𝐾 ∈ OP ∧ (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5020, 42, 49syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5148, 50eqtrd 2764 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5251fveq2d 6862 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))) = (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
53 f1ocnvfv2 7252 . . . 4 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) = {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
5418, 40, 53syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) = {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
5510, 52, 543eqtrrd 2769 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} = ( ‘( 𝑋)))
561, 55sseqtrid 3989 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ⊆ ( ‘( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3405  wss 3914  c0 4296   cint 4910  ccnv 5637  ran crn 5639   Fn wfn 6506  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  Basecbs 17179  occoc 17228  1.cp1 18383  LSubSpclss 20837  OPcops 39165  HLchlt 39343  LHypclh 39978  DVecHcdvh 41072  DIsoHcdih 41222  ocHcoch 41341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-undef 8252  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-0g 17404  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010  df-lsatoms 38969  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tendo 40749  df-edring 40751  df-disoa 41023  df-dvech 41073  df-dib 41133  df-dic 41167  df-dih 41223  df-doch 41342
This theorem is referenced by:  dochsscl  41362  dochsat  41377  dochshpncl  41378  dochlkr  41379  dochdmj1  41384  dochnoncon  41385
  Copyright terms: Public domain W3C validator