Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochocss Structured version   Visualization version   GIF version

Theorem dochocss 38662
Description: Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
dochss.h 𝐻 = (LHyp‘𝐾)
dochss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochss.v 𝑉 = (Base‘𝑈)
dochss.o = ((ocH‘𝐾)‘𝑊)
Assertion
Ref Expression
dochocss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ⊆ ( ‘( 𝑋)))

Proof of Theorem dochocss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4856 . 2 𝑋 {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}
2 dochss.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2798 . . . . 5 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
4 dochss.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dochss.v . . . . 5 𝑉 = (Base‘𝑈)
6 dochss.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
72, 3, 4, 5, 6dochcl 38649 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊))
8 eqid 2798 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
98, 2, 3, 6dochvalr 38653 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))))
107, 9syldan 594 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( ‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))))
118, 2, 3, 4, 5, 6dochval2 38648 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))))
1211fveq2d 6649 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))))
13 eqid 2798 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
14 eqid 2798 . . . . . . . . . . 11 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1513, 2, 3, 4, 14dihf11 38563 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈))
1615adantr 484 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈))
17 f1f1orn 6601 . . . . . . . . 9 (((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊))
1816, 17syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊))
19 hlop 36658 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
2019ad2antrr 725 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝐾 ∈ OP)
21 simpl 486 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22 ssrab2 4007 . . . . . . . . . . . 12 {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊)
2322a1i 11 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊))
24 eqid 2798 . . . . . . . . . . . . . . . 16 (1.‘𝐾) = (1.‘𝐾)
2524, 2, 3, 4, 5dih1 38582 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) = 𝑉)
2625adantr 484 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) = 𝑉)
27 f1fn 6550 . . . . . . . . . . . . . . . 16 (((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈) → ((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾))
2816, 27syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾))
2913, 24op1cl 36481 . . . . . . . . . . . . . . . 16 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
3020, 29syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (1.‘𝐾) ∈ (Base‘𝐾))
31 fnfvelrn 6825 . . . . . . . . . . . . . . 15 ((((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3228, 30, 31syl2anc 587 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3326, 32eqeltrrd 2891 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊))
34 simpr 488 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋𝑉)
35 sseq2 3941 . . . . . . . . . . . . . 14 (𝑧 = 𝑉 → (𝑋𝑧𝑋𝑉))
3635elrab 3628 . . . . . . . . . . . . 13 (𝑉 ∈ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ↔ (𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∧ 𝑋𝑉))
3733, 34, 36sylanbrc 586 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑉 ∈ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
3837ne0d 4251 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ≠ ∅)
392, 3dihintcl 38640 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ≠ ∅)) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊))
4021, 23, 38, 39syl12anc 835 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊))
41 f1ocnvdm 7019 . . . . . . . . . 10 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾))
4218, 40, 41syl2anc 587 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾))
4313, 8opoccl 36490 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾))
4420, 42, 43syl2anc 587 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾))
45 f1ocnvfv1 7011 . . . . . . . 8 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾)) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4618, 44, 45syl2anc 587 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4712, 46eqtrd 2833 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘( 𝑋)) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4847fveq2d 6649 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋))) = ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))))
4913, 8opococ 36491 . . . . . 6 ((𝐾 ∈ OP ∧ (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5020, 42, 49syl2anc 587 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5148, 50eqtrd 2833 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5251fveq2d 6649 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))) = (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
53 f1ocnvfv2 7012 . . . 4 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) = {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
5418, 40, 53syl2anc 587 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) = {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
5510, 52, 543eqtrrd 2838 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} = ( ‘( 𝑋)))
561, 55sseqtrid 3967 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ⊆ ( ‘( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  {crab 3110  wss 3881  c0 4243   cint 4838  ccnv 5518  ran crn 5520   Fn wfn 6319  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  Basecbs 16475  occoc 16565  1.cp1 17640  LSubSpclss 19696  OPcops 36468  HLchlt 36646  LHypclh 37280  DVecHcdvh 38374  DIsoHcdih 38524  ocHcoch 38643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36249
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-undef 7922  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lsatoms 36272  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796  df-lines 36797  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455  df-tendo 38051  df-edring 38053  df-disoa 38325  df-dvech 38375  df-dib 38435  df-dic 38469  df-dih 38525  df-doch 38644
This theorem is referenced by:  dochsscl  38664  dochsat  38679  dochshpncl  38680  dochlkr  38681  dochdmj1  38686  dochnoncon  38687
  Copyright terms: Public domain W3C validator