Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochocss Structured version   Visualization version   GIF version

Theorem dochocss 41367
Description: Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
dochss.h 𝐻 = (LHyp‘𝐾)
dochss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochss.v 𝑉 = (Base‘𝑈)
dochss.o = ((ocH‘𝐾)‘𝑊)
Assertion
Ref Expression
dochocss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ⊆ ( ‘( 𝑋)))

Proof of Theorem dochocss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4933 . 2 𝑋 {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}
2 dochss.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2730 . . . . 5 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
4 dochss.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dochss.v . . . . 5 𝑉 = (Base‘𝑈)
6 dochss.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
72, 3, 4, 5, 6dochcl 41354 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊))
8 eqid 2730 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
98, 2, 3, 6dochvalr 41358 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))))
107, 9syldan 591 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( ‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))))
118, 2, 3, 4, 5, 6dochval2 41353 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))))
1211fveq2d 6865 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))))
13 eqid 2730 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
14 eqid 2730 . . . . . . . . . . 11 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1513, 2, 3, 4, 14dihf11 41268 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈))
1615adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈))
17 f1f1orn 6814 . . . . . . . . 9 (((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊))
1816, 17syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊))
19 hlop 39362 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
2019ad2antrr 726 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝐾 ∈ OP)
21 simpl 482 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22 ssrab2 4046 . . . . . . . . . . . 12 {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊)
2322a1i 11 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊))
24 eqid 2730 . . . . . . . . . . . . . . . 16 (1.‘𝐾) = (1.‘𝐾)
2524, 2, 3, 4, 5dih1 41287 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) = 𝑉)
2625adantr 480 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) = 𝑉)
27 f1fn 6760 . . . . . . . . . . . . . . . 16 (((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈) → ((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾))
2816, 27syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾))
2913, 24op1cl 39185 . . . . . . . . . . . . . . . 16 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
3020, 29syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (1.‘𝐾) ∈ (Base‘𝐾))
31 fnfvelrn 7055 . . . . . . . . . . . . . . 15 ((((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3228, 30, 31syl2anc 584 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3326, 32eqeltrrd 2830 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊))
34 simpr 484 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋𝑉)
35 sseq2 3976 . . . . . . . . . . . . . 14 (𝑧 = 𝑉 → (𝑋𝑧𝑋𝑉))
3635elrab 3662 . . . . . . . . . . . . 13 (𝑉 ∈ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ↔ (𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∧ 𝑋𝑉))
3733, 34, 36sylanbrc 583 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑉 ∈ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
3837ne0d 4308 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ≠ ∅)
392, 3dihintcl 41345 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ≠ ∅)) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊))
4021, 23, 38, 39syl12anc 836 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊))
41 f1ocnvdm 7263 . . . . . . . . . 10 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾))
4218, 40, 41syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾))
4313, 8opoccl 39194 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾))
4420, 42, 43syl2anc 584 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾))
45 f1ocnvfv1 7254 . . . . . . . 8 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾)) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4618, 44, 45syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4712, 46eqtrd 2765 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘( 𝑋)) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4847fveq2d 6865 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋))) = ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))))
4913, 8opococ 39195 . . . . . 6 ((𝐾 ∈ OP ∧ (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5020, 42, 49syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5148, 50eqtrd 2765 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5251fveq2d 6865 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))) = (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
53 f1ocnvfv2 7255 . . . 4 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) = {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
5418, 40, 53syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) = {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
5510, 52, 543eqtrrd 2770 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} = ( ‘( 𝑋)))
561, 55sseqtrid 3992 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ⊆ ( ‘( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  {crab 3408  wss 3917  c0 4299   cint 4913  ccnv 5640  ran crn 5642   Fn wfn 6509  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  Basecbs 17186  occoc 17235  1.cp1 18390  LSubSpclss 20844  OPcops 39172  HLchlt 39350  LHypclh 39985  DVecHcdvh 41079  DIsoHcdih 41229  ocHcoch 41348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lsatoms 38976  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tendo 40756  df-edring 40758  df-disoa 41030  df-dvech 41080  df-dib 41140  df-dic 41174  df-dih 41230  df-doch 41349
This theorem is referenced by:  dochsscl  41369  dochsat  41384  dochshpncl  41385  dochlkr  41386  dochdmj1  41391  dochnoncon  41392
  Copyright terms: Public domain W3C validator