Step | Hyp | Ref
| Expression |
1 | | ssintub 4970 |
. 2
β’ π β β© {π§
β ran ((DIsoHβπΎ)βπ) β£ π β π§} |
2 | | dochss.h |
. . . . 5
β’ π» = (LHypβπΎ) |
3 | | eqid 2732 |
. . . . 5
β’
((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) |
4 | | dochss.u |
. . . . 5
β’ π = ((DVecHβπΎ)βπ) |
5 | | dochss.v |
. . . . 5
β’ π = (Baseβπ) |
6 | | dochss.o |
. . . . 5
β’ β₯ =
((ocHβπΎ)βπ) |
7 | 2, 3, 4, 5, 6 | dochcl 40219 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) β ran ((DIsoHβπΎ)βπ)) |
8 | | eqid 2732 |
. . . . 5
β’
(ocβπΎ) =
(ocβπΎ) |
9 | 8, 2, 3, 6 | dochvalr 40223 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ ( β₯ βπ) β ran ((DIsoHβπΎ)βπ)) β ( β₯ β( β₯
βπ)) =
(((DIsoHβπΎ)βπ)β((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)β( β₯ βπ))))) |
10 | 7, 9 | syldan 591 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ β( β₯
βπ)) =
(((DIsoHβπΎ)βπ)β((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)β( β₯ βπ))))) |
11 | 8, 2, 3, 4, 5, 6 | dochval2 40218 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) = (((DIsoHβπΎ)βπ)β((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§})))) |
12 | 11 | fveq2d 6895 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ π β π) β (β‘((DIsoHβπΎ)βπ)β( β₯ βπ)) = (β‘((DIsoHβπΎ)βπ)β(((DIsoHβπΎ)βπ)β((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}))))) |
13 | | eqid 2732 |
. . . . . . . . . . 11
β’
(BaseβπΎ) =
(BaseβπΎ) |
14 | | eqid 2732 |
. . . . . . . . . . 11
β’
(LSubSpβπ) =
(LSubSpβπ) |
15 | 13, 2, 3, 4, 14 | dihf11 40133 |
. . . . . . . . . 10
β’ ((πΎ β HL β§ π β π») β ((DIsoHβπΎ)βπ):(BaseβπΎ)β1-1β(LSubSpβπ)) |
16 | 15 | adantr 481 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ π β π) β ((DIsoHβπΎ)βπ):(BaseβπΎ)β1-1β(LSubSpβπ)) |
17 | | f1f1orn 6844 |
. . . . . . . . 9
β’
(((DIsoHβπΎ)βπ):(BaseβπΎ)β1-1β(LSubSpβπ) β ((DIsoHβπΎ)βπ):(BaseβπΎ)β1-1-ontoβran
((DIsoHβπΎ)βπ)) |
18 | 16, 17 | syl 17 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ π β π) β ((DIsoHβπΎ)βπ):(BaseβπΎ)β1-1-ontoβran
((DIsoHβπΎ)βπ)) |
19 | | hlop 38227 |
. . . . . . . . . 10
β’ (πΎ β HL β πΎ β OP) |
20 | 19 | ad2antrr 724 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ π β π) β πΎ β OP) |
21 | | simpl 483 |
. . . . . . . . . . 11
β’ (((πΎ β HL β§ π β π») β§ π β π) β (πΎ β HL β§ π β π»)) |
22 | | ssrab2 4077 |
. . . . . . . . . . . 12
β’ {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§} β ran ((DIsoHβπΎ)βπ) |
23 | 22 | a1i 11 |
. . . . . . . . . . 11
β’ (((πΎ β HL β§ π β π») β§ π β π) β {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§} β ran ((DIsoHβπΎ)βπ)) |
24 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
(1.βπΎ) =
(1.βπΎ) |
25 | 24, 2, 3, 4, 5 | dih1 40152 |
. . . . . . . . . . . . . . 15
β’ ((πΎ β HL β§ π β π») β (((DIsoHβπΎ)βπ)β(1.βπΎ)) = π) |
26 | 25 | adantr 481 |
. . . . . . . . . . . . . 14
β’ (((πΎ β HL β§ π β π») β§ π β π) β (((DIsoHβπΎ)βπ)β(1.βπΎ)) = π) |
27 | | f1fn 6788 |
. . . . . . . . . . . . . . . 16
β’
(((DIsoHβπΎ)βπ):(BaseβπΎ)β1-1β(LSubSpβπ) β ((DIsoHβπΎ)βπ) Fn (BaseβπΎ)) |
28 | 16, 27 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (((πΎ β HL β§ π β π») β§ π β π) β ((DIsoHβπΎ)βπ) Fn (BaseβπΎ)) |
29 | 13, 24 | op1cl 38050 |
. . . . . . . . . . . . . . . 16
β’ (πΎ β OP β
(1.βπΎ) β
(BaseβπΎ)) |
30 | 20, 29 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (((πΎ β HL β§ π β π») β§ π β π) β (1.βπΎ) β (BaseβπΎ)) |
31 | | fnfvelrn 7082 |
. . . . . . . . . . . . . . 15
β’
((((DIsoHβπΎ)βπ) Fn (BaseβπΎ) β§ (1.βπΎ) β (BaseβπΎ)) β (((DIsoHβπΎ)βπ)β(1.βπΎ)) β ran ((DIsoHβπΎ)βπ)) |
32 | 28, 30, 31 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ (((πΎ β HL β§ π β π») β§ π β π) β (((DIsoHβπΎ)βπ)β(1.βπΎ)) β ran ((DIsoHβπΎ)βπ)) |
33 | 26, 32 | eqeltrrd 2834 |
. . . . . . . . . . . . 13
β’ (((πΎ β HL β§ π β π») β§ π β π) β π β ran ((DIsoHβπΎ)βπ)) |
34 | | simpr 485 |
. . . . . . . . . . . . 13
β’ (((πΎ β HL β§ π β π») β§ π β π) β π β π) |
35 | | sseq2 4008 |
. . . . . . . . . . . . . 14
β’ (π§ = π β (π β π§ β π β π)) |
36 | 35 | elrab 3683 |
. . . . . . . . . . . . 13
β’ (π β {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§} β (π β ran ((DIsoHβπΎ)βπ) β§ π β π)) |
37 | 33, 34, 36 | sylanbrc 583 |
. . . . . . . . . . . 12
β’ (((πΎ β HL β§ π β π») β§ π β π) β π β {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}) |
38 | 37 | ne0d 4335 |
. . . . . . . . . . 11
β’ (((πΎ β HL β§ π β π») β§ π β π) β {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§} β β
) |
39 | 2, 3 | dihintcl 40210 |
. . . . . . . . . . 11
β’ (((πΎ β HL β§ π β π») β§ ({π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§} β ran ((DIsoHβπΎ)βπ) β§ {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§} β β
)) β β© {π§
β ran ((DIsoHβπΎ)βπ) β£ π β π§} β ran ((DIsoHβπΎ)βπ)) |
40 | 21, 23, 38, 39 | syl12anc 835 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ π β π) β β© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§} β ran ((DIsoHβπΎ)βπ)) |
41 | | f1ocnvdm 7282 |
. . . . . . . . . 10
β’
((((DIsoHβπΎ)βπ):(BaseβπΎ)β1-1-ontoβran
((DIsoHβπΎ)βπ) β§ β© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§} β ran ((DIsoHβπΎ)βπ)) β (β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}) β (BaseβπΎ)) |
42 | 18, 40, 41 | syl2anc 584 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ π β π) β (β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}) β (BaseβπΎ)) |
43 | 13, 8 | opoccl 38059 |
. . . . . . . . 9
β’ ((πΎ β OP β§ (β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}) β (BaseβπΎ)) β ((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§})) β (BaseβπΎ)) |
44 | 20, 42, 43 | syl2anc 584 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ π β π) β ((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§})) β (BaseβπΎ)) |
45 | | f1ocnvfv1 7273 |
. . . . . . . 8
β’
((((DIsoHβπΎ)βπ):(BaseβπΎ)β1-1-ontoβran
((DIsoHβπΎ)βπ) β§ ((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§})) β (BaseβπΎ)) β (β‘((DIsoHβπΎ)βπ)β(((DIsoHβπΎ)βπ)β((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§})))) = ((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}))) |
46 | 18, 44, 45 | syl2anc 584 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ π β π) β (β‘((DIsoHβπΎ)βπ)β(((DIsoHβπΎ)βπ)β((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§})))) = ((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}))) |
47 | 12, 46 | eqtrd 2772 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ π β π) β (β‘((DIsoHβπΎ)βπ)β( β₯ βπ)) = ((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}))) |
48 | 47 | fveq2d 6895 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π) β ((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)β( β₯ βπ))) = ((ocβπΎ)β((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§})))) |
49 | 13, 8 | opococ 38060 |
. . . . . 6
β’ ((πΎ β OP β§ (β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}) β (BaseβπΎ)) β ((ocβπΎ)β((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}))) = (β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§})) |
50 | 20, 42, 49 | syl2anc 584 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π) β ((ocβπΎ)β((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}))) = (β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§})) |
51 | 48, 50 | eqtrd 2772 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π) β ((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)β( β₯ βπ))) = (β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§})) |
52 | 51 | fveq2d 6895 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β π) β (((DIsoHβπΎ)βπ)β((ocβπΎ)β(β‘((DIsoHβπΎ)βπ)β( β₯ βπ)))) = (((DIsoHβπΎ)βπ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}))) |
53 | | f1ocnvfv2 7274 |
. . . 4
β’
((((DIsoHβπΎ)βπ):(BaseβπΎ)β1-1-ontoβran
((DIsoHβπΎ)βπ) β§ β© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§} β ran ((DIsoHβπΎ)βπ)) β (((DIsoHβπΎ)βπ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§})) = β© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}) |
54 | 18, 40, 53 | syl2anc 584 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β π) β (((DIsoHβπΎ)βπ)β(β‘((DIsoHβπΎ)βπ)ββ© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§})) = β© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§}) |
55 | 10, 52, 54 | 3eqtrrd 2777 |
. 2
β’ (((πΎ β HL β§ π β π») β§ π β π) β β© {π§ β ran ((DIsoHβπΎ)βπ) β£ π β π§} = ( β₯ β( β₯
βπ))) |
56 | 1, 55 | sseqtrid 4034 |
1
β’ (((πΎ β HL β§ π β π») β§ π β π) β π β ( β₯ β( β₯
βπ))) |