Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochocss Structured version   Visualization version   GIF version

Theorem dochocss 40969
Description: Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
dochss.h 𝐻 = (LHyp‘𝐾)
dochss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochss.v 𝑉 = (Base‘𝑈)
dochss.o = ((ocH‘𝐾)‘𝑊)
Assertion
Ref Expression
dochocss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ⊆ ( ‘( 𝑋)))

Proof of Theorem dochocss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4970 . 2 𝑋 {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}
2 dochss.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2725 . . . . 5 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
4 dochss.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dochss.v . . . . 5 𝑉 = (Base‘𝑈)
6 dochss.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
72, 3, 4, 5, 6dochcl 40956 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊))
8 eqid 2725 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
98, 2, 3, 6dochvalr 40960 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))))
107, 9syldan 589 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( ‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))))
118, 2, 3, 4, 5, 6dochval2 40955 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))))
1211fveq2d 6900 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))))
13 eqid 2725 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
14 eqid 2725 . . . . . . . . . . 11 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1513, 2, 3, 4, 14dihf11 40870 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈))
1615adantr 479 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈))
17 f1f1orn 6849 . . . . . . . . 9 (((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊))
1816, 17syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊))
19 hlop 38964 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
2019ad2antrr 724 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝐾 ∈ OP)
21 simpl 481 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22 ssrab2 4073 . . . . . . . . . . . 12 {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊)
2322a1i 11 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊))
24 eqid 2725 . . . . . . . . . . . . . . . 16 (1.‘𝐾) = (1.‘𝐾)
2524, 2, 3, 4, 5dih1 40889 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) = 𝑉)
2625adantr 479 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) = 𝑉)
27 f1fn 6794 . . . . . . . . . . . . . . . 16 (((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈) → ((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾))
2816, 27syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾))
2913, 24op1cl 38787 . . . . . . . . . . . . . . . 16 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
3020, 29syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (1.‘𝐾) ∈ (Base‘𝐾))
31 fnfvelrn 7089 . . . . . . . . . . . . . . 15 ((((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3228, 30, 31syl2anc 582 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3326, 32eqeltrrd 2826 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊))
34 simpr 483 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋𝑉)
35 sseq2 4003 . . . . . . . . . . . . . 14 (𝑧 = 𝑉 → (𝑋𝑧𝑋𝑉))
3635elrab 3679 . . . . . . . . . . . . 13 (𝑉 ∈ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ↔ (𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∧ 𝑋𝑉))
3733, 34, 36sylanbrc 581 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑉 ∈ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
3837ne0d 4335 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ≠ ∅)
392, 3dihintcl 40947 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ≠ ∅)) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊))
4021, 23, 38, 39syl12anc 835 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊))
41 f1ocnvdm 7294 . . . . . . . . . 10 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾))
4218, 40, 41syl2anc 582 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾))
4313, 8opoccl 38796 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾))
4420, 42, 43syl2anc 582 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾))
45 f1ocnvfv1 7285 . . . . . . . 8 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾)) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4618, 44, 45syl2anc 582 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4712, 46eqtrd 2765 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘( 𝑋)) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4847fveq2d 6900 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋))) = ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))))
4913, 8opococ 38797 . . . . . 6 ((𝐾 ∈ OP ∧ (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5020, 42, 49syl2anc 582 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5148, 50eqtrd 2765 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5251fveq2d 6900 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))) = (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
53 f1ocnvfv2 7286 . . . 4 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) = {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
5418, 40, 53syl2anc 582 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) = {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
5510, 52, 543eqtrrd 2770 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} = ( ‘( 𝑋)))
561, 55sseqtrid 4029 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ⊆ ( ‘( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  {crab 3418  wss 3944  c0 4322   cint 4950  ccnv 5677  ran crn 5679   Fn wfn 6544  1-1wf1 6546  1-1-ontowf1o 6548  cfv 6549  Basecbs 17183  occoc 17244  1.cp1 18419  LSubSpclss 20827  OPcops 38774  HLchlt 38952  LHypclh 39587  DVecHcdvh 40681  DIsoHcdih 40831  ocHcoch 40950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-riotaBAD 38555
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-undef 8279  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-0g 17426  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cntz 19280  df-lsm 19603  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-drng 20638  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lvec 21000  df-lsatoms 38578  df-oposet 38778  df-ol 38780  df-oml 38781  df-covers 38868  df-ats 38869  df-atl 38900  df-cvlat 38924  df-hlat 38953  df-llines 39101  df-lplanes 39102  df-lvols 39103  df-lines 39104  df-psubsp 39106  df-pmap 39107  df-padd 39399  df-lhyp 39591  df-laut 39592  df-ldil 39707  df-ltrn 39708  df-trl 39762  df-tendo 40358  df-edring 40360  df-disoa 40632  df-dvech 40682  df-dib 40742  df-dic 40776  df-dih 40832  df-doch 40951
This theorem is referenced by:  dochsscl  40971  dochsat  40986  dochshpncl  40987  dochlkr  40988  dochdmj1  40993  dochnoncon  40994
  Copyright terms: Public domain W3C validator