Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochocss Structured version   Visualization version   GIF version

Theorem dochocss 39307
Description: Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
dochss.h 𝐻 = (LHyp‘𝐾)
dochss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochss.v 𝑉 = (Base‘𝑈)
dochss.o = ((ocH‘𝐾)‘𝑊)
Assertion
Ref Expression
dochocss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ⊆ ( ‘( 𝑋)))

Proof of Theorem dochocss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4894 . 2 𝑋 {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}
2 dochss.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2738 . . . . 5 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
4 dochss.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dochss.v . . . . 5 𝑉 = (Base‘𝑈)
6 dochss.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
72, 3, 4, 5, 6dochcl 39294 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊))
8 eqid 2738 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
98, 2, 3, 6dochvalr 39298 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))))
107, 9syldan 590 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( ‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))))
118, 2, 3, 4, 5, 6dochval2 39293 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))))
1211fveq2d 6760 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘( 𝑋)) = (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))))
13 eqid 2738 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
14 eqid 2738 . . . . . . . . . . 11 (LSubSp‘𝑈) = (LSubSp‘𝑈)
1513, 2, 3, 4, 14dihf11 39208 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈))
1615adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈))
17 f1f1orn 6711 . . . . . . . . 9 (((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊))
1816, 17syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊))
19 hlop 37303 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
2019ad2antrr 722 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝐾 ∈ OP)
21 simpl 482 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22 ssrab2 4009 . . . . . . . . . . . 12 {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊)
2322a1i 11 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊))
24 eqid 2738 . . . . . . . . . . . . . . . 16 (1.‘𝐾) = (1.‘𝐾)
2524, 2, 3, 4, 5dih1 39227 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) = 𝑉)
2625adantr 480 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) = 𝑉)
27 f1fn 6655 . . . . . . . . . . . . . . . 16 (((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1→(LSubSp‘𝑈) → ((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾))
2816, 27syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾))
2913, 24op1cl 37126 . . . . . . . . . . . . . . . 16 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
3020, 29syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (1.‘𝐾) ∈ (Base‘𝐾))
31 fnfvelrn 6940 . . . . . . . . . . . . . . 15 ((((DIsoH‘𝐾)‘𝑊) Fn (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3228, 30, 31syl2anc 583 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(1.‘𝐾)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3326, 32eqeltrrd 2840 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊))
34 simpr 484 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋𝑉)
35 sseq2 3943 . . . . . . . . . . . . . 14 (𝑧 = 𝑉 → (𝑋𝑧𝑋𝑉))
3635elrab 3617 . . . . . . . . . . . . 13 (𝑉 ∈ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ↔ (𝑉 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∧ 𝑋𝑉))
3733, 34, 36sylanbrc 582 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑉 ∈ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
3837ne0d 4266 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ≠ ∅)
392, 3dihintcl 39285 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ⊆ ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ≠ ∅)) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊))
4021, 23, 38, 39syl12anc 833 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊))
41 f1ocnvdm 7137 . . . . . . . . . 10 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾))
4218, 40, 41syl2anc 583 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾))
4313, 8opoccl 37135 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾))
4420, 42, 43syl2anc 583 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾))
45 f1ocnvfv1 7129 . . . . . . . 8 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) ∈ (Base‘𝐾)) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4618, 44, 45syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4712, 46eqtrd 2778 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘( 𝑋)) = ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
4847fveq2d 6760 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋))) = ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))))
4913, 8opococ 37136 . . . . . 6 ((𝐾 ∈ OP ∧ (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5020, 42, 49syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5148, 50eqtrd 2778 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋))) = (((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧}))
5251fveq2d 6760 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘(((DIsoH‘𝐾)‘𝑊)‘( 𝑋)))) = (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})))
53 f1ocnvfv2 7130 . . . 4 ((((DIsoH‘𝐾)‘𝑊):(Base‘𝐾)–1-1-onto→ran ((DIsoH‘𝐾)‘𝑊) ∧ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) = {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
5418, 40, 53syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (((DIsoH‘𝐾)‘𝑊)‘(((DIsoH‘𝐾)‘𝑊)‘ {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})) = {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧})
5510, 52, 543eqtrrd 2783 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → {𝑧 ∈ ran ((DIsoH‘𝐾)‘𝑊) ∣ 𝑋𝑧} = ( ‘( 𝑋)))
561, 55sseqtrid 3969 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ⊆ ( ‘( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  wss 3883  c0 4253   cint 4876  ccnv 5579  ran crn 5581   Fn wfn 6413  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  Basecbs 16840  occoc 16896  1.cp1 18057  LSubSpclss 20108  OPcops 37113  HLchlt 37291  LHypclh 37925  DVecHcdvh 39019  DIsoHcdih 39169  ocHcoch 39288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-undef 8060  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-0g 17069  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lsatoms 36917  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-tendo 38696  df-edring 38698  df-disoa 38970  df-dvech 39020  df-dib 39080  df-dic 39114  df-dih 39170  df-doch 39289
This theorem is referenced by:  dochsscl  39309  dochsat  39324  dochshpncl  39325  dochlkr  39326  dochdmj1  39331  dochnoncon  39332
  Copyright terms: Public domain W3C validator