MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspssid Structured version   Visualization version   GIF version

Theorem lspssid 20881
Description: A set of vectors is a subset of its span. (spanss2 31227 analog.) (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v 𝑉 = (Base‘𝑊)
lspss.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspssid ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))

Proof of Theorem lspssid
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4970 . 2 𝑈 {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡}
2 lspss.v . . 3 𝑉 = (Base‘𝑊)
3 eqid 2725 . . 3 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4 lspss.n . . 3 𝑁 = (LSpan‘𝑊)
52, 3, 4lspval 20871 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
61, 5sseqtrrid 4030 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3418  wss 3944   cint 4950  cfv 6549  Basecbs 17183  LModclmod 20755  LSubSpclss 20827  LSpanclspn 20867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-lmod 20757  df-lss 20828  df-lsp 20868
This theorem is referenced by:  lspun  20883  lspsnid  20889  lsslsp  20911  lsslspOLD  20912  lmhmlsp  20946  lsmsp  20983  lsmssspx  20985  lspvadd  20993  lspsolvlem  21042  lspsolv  21043  lsppratlem3  21049  lsppratlem4  21050  islbs3  21055  lbsextlem2  21059  lbsextlem4  21061  rspssid  21144  ocvlsp  21625  obselocv  21679  frlmsslsp  21747  lindff1  21771  islinds3  21785  mxidlprm  33282  lbslsat  33445  lindsunlem  33453  dimkerim  33456  lindsenlbs  37219  dochocsp  40982  djhunssN  41012  islssfg2  42637
  Copyright terms: Public domain W3C validator