| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspssid | Structured version Visualization version GIF version | ||
| Description: A set of vectors is a subset of its span. (spanss2 31327 analog.) (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspssid | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintub 4916 | . 2 ⊢ 𝑈 ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} | |
| 2 | lspss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | eqid 2733 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 4 | lspss.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | 2, 3, 4 | lspval 20910 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
| 6 | 1, 5 | sseqtrrid 3974 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 ∩ cint 4897 ‘cfv 6486 Basecbs 17122 LModclmod 20795 LSubSpclss 20866 LSpanclspn 20906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-lmod 20797 df-lss 20867 df-lsp 20907 |
| This theorem is referenced by: lspun 20922 lspsnid 20928 lsslsp 20950 lsslspOLD 20951 lmhmlsp 20985 lsmsp 21022 lsmssspx 21024 lspvadd 21032 lspsolvlem 21081 lspsolv 21082 lsppratlem3 21088 lsppratlem4 21089 islbs3 21094 lbsextlem2 21098 lbsextlem4 21100 rspssid 21175 ocvlsp 21615 obselocv 21667 frlmsslsp 21735 lindff1 21759 islinds3 21773 mxidlprm 33442 lbslsat 33650 lindsunlem 33658 dimkerim 33661 lindsenlbs 37675 dochocsp 41498 djhunssN 41528 islssfg2 43188 |
| Copyright terms: Public domain | W3C validator |