![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspssid | Structured version Visualization version GIF version |
Description: A set of vectors is a subset of its span. (spanss2 31102 analog.) (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspss.v | β’ π = (Baseβπ) |
lspss.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspssid | β’ ((π β LMod β§ π β π) β π β (πβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintub 4963 | . 2 β’ π β β© {π‘ β (LSubSpβπ) β£ π β π‘} | |
2 | lspss.v | . . 3 β’ π = (Baseβπ) | |
3 | eqid 2726 | . . 3 β’ (LSubSpβπ) = (LSubSpβπ) | |
4 | lspss.n | . . 3 β’ π = (LSpanβπ) | |
5 | 2, 3, 4 | lspval 20819 | . 2 β’ ((π β LMod β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
6 | 1, 5 | sseqtrrid 4030 | 1 β’ ((π β LMod β§ π β π) β π β (πβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 {crab 3426 β wss 3943 β© cint 4943 βcfv 6536 Basecbs 17150 LModclmod 20703 LSubSpclss 20775 LSpanclspn 20815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-lmod 20705 df-lss 20776 df-lsp 20816 |
This theorem is referenced by: lspun 20831 lspsnid 20837 lsslsp 20859 lsslspOLD 20860 lmhmlsp 20894 lsmsp 20931 lsmssspx 20933 lspvadd 20941 lspsolvlem 20990 lspsolv 20991 lsppratlem3 20997 lsppratlem4 20998 islbs3 21003 lbsextlem2 21007 lbsextlem4 21009 rspssid 21092 ocvlsp 21564 obselocv 21618 frlmsslsp 21686 lindff1 21710 islinds3 21724 mxidlprm 33091 lbslsat 33218 lindsunlem 33226 dimkerim 33229 lindsenlbs 36995 dochocsp 40762 djhunssN 40792 islssfg2 42373 |
Copyright terms: Public domain | W3C validator |