Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspssid | Structured version Visualization version GIF version |
Description: A set of vectors is a subset of its span. (spanss2 29608 analog.) (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspssid | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintub 4894 | . 2 ⊢ 𝑈 ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} | |
2 | lspss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | eqid 2738 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
4 | lspss.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | 2, 3, 4 | lspval 20152 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
6 | 1, 5 | sseqtrrid 3970 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ∩ cint 4876 ‘cfv 6418 Basecbs 16840 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-lmod 20040 df-lss 20109 df-lsp 20149 |
This theorem is referenced by: lspun 20164 lspsnid 20170 lsslsp 20192 lmhmlsp 20226 lsmsp 20263 lsmssspx 20265 lspvadd 20273 lspsolvlem 20319 lspsolv 20320 lsppratlem3 20326 lsppratlem4 20327 islbs3 20332 lbsextlem2 20336 lbsextlem4 20338 rspssid 20407 ocvlsp 20793 obselocv 20845 frlmsslsp 20913 lindff1 20937 islinds3 20951 mxidlprm 31542 lbslsat 31601 lindsunlem 31607 dimkerim 31610 lindsenlbs 35699 dochocsp 39320 djhunssN 39350 islssfg2 40812 |
Copyright terms: Public domain | W3C validator |