| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspssid | Structured version Visualization version GIF version | ||
| Description: A set of vectors is a subset of its span. (spanss2 31307 analog.) (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspssid | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintub 4919 | . 2 ⊢ 𝑈 ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} | |
| 2 | lspss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | eqid 2729 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 4 | lspss.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | 2, 3, 4 | lspval 20896 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
| 6 | 1, 5 | sseqtrrid 3981 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 ∩ cint 4899 ‘cfv 6486 Basecbs 17138 LModclmod 20781 LSubSpclss 20852 LSpanclspn 20892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-lmod 20783 df-lss 20853 df-lsp 20893 |
| This theorem is referenced by: lspun 20908 lspsnid 20914 lsslsp 20936 lsslspOLD 20937 lmhmlsp 20971 lsmsp 21008 lsmssspx 21010 lspvadd 21018 lspsolvlem 21067 lspsolv 21068 lsppratlem3 21074 lsppratlem4 21075 islbs3 21080 lbsextlem2 21084 lbsextlem4 21086 rspssid 21161 ocvlsp 21601 obselocv 21653 frlmsslsp 21721 lindff1 21745 islinds3 21759 mxidlprm 33417 lbslsat 33588 lindsunlem 33596 dimkerim 33599 lindsenlbs 37594 dochocsp 41358 djhunssN 41388 islssfg2 43044 |
| Copyright terms: Public domain | W3C validator |