| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspssid | Structured version Visualization version GIF version | ||
| Description: A set of vectors is a subset of its span. (spanss2 31274 analog.) (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspssid | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintub 4930 | . 2 ⊢ 𝑈 ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} | |
| 2 | lspss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | eqid 2729 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 4 | lspss.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | 2, 3, 4 | lspval 20881 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
| 6 | 1, 5 | sseqtrrid 3990 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 ∩ cint 4910 ‘cfv 6511 Basecbs 17179 LModclmod 20766 LSubSpclss 20837 LSpanclspn 20877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-lmod 20768 df-lss 20838 df-lsp 20878 |
| This theorem is referenced by: lspun 20893 lspsnid 20899 lsslsp 20921 lsslspOLD 20922 lmhmlsp 20956 lsmsp 20993 lsmssspx 20995 lspvadd 21003 lspsolvlem 21052 lspsolv 21053 lsppratlem3 21059 lsppratlem4 21060 islbs3 21065 lbsextlem2 21069 lbsextlem4 21071 rspssid 21146 ocvlsp 21585 obselocv 21637 frlmsslsp 21705 lindff1 21729 islinds3 21743 mxidlprm 33441 lbslsat 33612 lindsunlem 33620 dimkerim 33623 lindsenlbs 37609 dochocsp 41373 djhunssN 41403 islssfg2 43060 |
| Copyright terms: Public domain | W3C validator |