![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspssid | Structured version Visualization version GIF version |
Description: A set of vectors is a subset of its span. (spanss2 30593 analog.) (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspss.v | β’ π = (Baseβπ) |
lspss.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspssid | β’ ((π β LMod β§ π β π) β π β (πβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintub 4970 | . 2 β’ π β β© {π‘ β (LSubSpβπ) β£ π β π‘} | |
2 | lspss.v | . . 3 β’ π = (Baseβπ) | |
3 | eqid 2732 | . . 3 β’ (LSubSpβπ) = (LSubSpβπ) | |
4 | lspss.n | . . 3 β’ π = (LSpanβπ) | |
5 | 2, 3, 4 | lspval 20585 | . 2 β’ ((π β LMod β§ π β π) β (πβπ) = β© {π‘ β (LSubSpβπ) β£ π β π‘}) |
6 | 1, 5 | sseqtrrid 4035 | 1 β’ ((π β LMod β§ π β π) β π β (πβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 β wss 3948 β© cint 4950 βcfv 6543 Basecbs 17143 LModclmod 20470 LSubSpclss 20541 LSpanclspn 20581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-lmod 20472 df-lss 20542 df-lsp 20582 |
This theorem is referenced by: lspun 20597 lspsnid 20603 lsslsp 20625 lmhmlsp 20659 lsmsp 20696 lsmssspx 20698 lspvadd 20706 lspsolvlem 20754 lspsolv 20755 lsppratlem3 20761 lsppratlem4 20762 islbs3 20767 lbsextlem2 20771 lbsextlem4 20773 rspssid 20847 ocvlsp 21228 obselocv 21282 frlmsslsp 21350 lindff1 21374 islinds3 21388 mxidlprm 32581 lbslsat 32696 lindsunlem 32704 dimkerim 32707 lindsenlbs 36478 dochocsp 40245 djhunssN 40275 islssfg2 41803 |
Copyright terms: Public domain | W3C validator |