MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspssid Structured version   Visualization version   GIF version

Theorem lspssid 20916
Description: A set of vectors is a subset of its span. (spanss2 31320 analog.) (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v 𝑉 = (Base‘𝑊)
lspss.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspssid ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))

Proof of Theorem lspssid
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4916 . 2 𝑈 {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡}
2 lspss.v . . 3 𝑉 = (Base‘𝑊)
3 eqid 2731 . . 3 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4 lspss.n . . 3 𝑁 = (LSpan‘𝑊)
52, 3, 4lspval 20906 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
61, 5sseqtrrid 3978 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  wss 3902   cint 4897  cfv 6481  Basecbs 17117  LModclmod 20791  LSubSpclss 20862  LSpanclspn 20902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-lmod 20793  df-lss 20863  df-lsp 20903
This theorem is referenced by:  lspun  20918  lspsnid  20924  lsslsp  20946  lsslspOLD  20947  lmhmlsp  20981  lsmsp  21018  lsmssspx  21020  lspvadd  21028  lspsolvlem  21077  lspsolv  21078  lsppratlem3  21084  lsppratlem4  21085  islbs3  21090  lbsextlem2  21094  lbsextlem4  21096  rspssid  21171  ocvlsp  21611  obselocv  21663  frlmsslsp  21731  lindff1  21755  islinds3  21769  mxidlprm  33430  lbslsat  33624  lindsunlem  33632  dimkerim  33635  lindsenlbs  37654  dochocsp  41417  djhunssN  41447  islssfg2  43103
  Copyright terms: Public domain W3C validator