| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscls | Structured version Visualization version GIF version | ||
| Description: A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| sscls | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintub 4942 | . 2 ⊢ 𝑆 ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} | |
| 2 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | clsval 22975 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 4 | 1, 3 | sseqtrrid 4002 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 ∪ cuni 4883 ∩ cint 4922 ‘cfv 6531 Topctop 22831 Clsdccld 22954 clsccl 22956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-top 22832 df-cld 22957 df-cls 22959 |
| This theorem is referenced by: iscld4 23003 elcls 23011 ntrcls0 23014 clslp 23086 restcls 23119 cncls2i 23208 nrmsep 23295 lpcls 23302 regsep2 23314 hauscmplem 23344 hauscmp 23345 clsconn 23368 conncompcld 23372 hausllycmp 23432 txcls 23542 ptclsg 23553 regr1lem 23677 kqreglem1 23679 kqreglem2 23680 kqnrmlem1 23681 kqnrmlem2 23682 fclscmpi 23967 flfcntr 23981 cnextfres 24007 clssubg 24047 tsmsid 24078 cnllycmp 24906 clsocv 25202 relcmpcmet 25270 bcthlem2 25277 bcthlem4 25279 limcnlp 25831 opnbnd 36343 opnregcld 36348 cldregopn 36349 heibor1lem 37833 heiborlem8 37842 sepdisj 48899 iscnrm3rlem4 48917 |
| Copyright terms: Public domain | W3C validator |