| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscls | Structured version Visualization version GIF version | ||
| Description: A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| sscls | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintub 4916 | . 2 ⊢ 𝑆 ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} | |
| 2 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | clsval 22950 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 4 | 1, 3 | sseqtrrid 3978 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3902 ∪ cuni 4859 ∩ cint 4897 ‘cfv 6481 Topctop 22806 Clsdccld 22929 clsccl 22931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22807 df-cld 22932 df-cls 22934 |
| This theorem is referenced by: iscld4 22978 elcls 22986 ntrcls0 22989 clslp 23061 restcls 23094 cncls2i 23183 nrmsep 23270 lpcls 23277 regsep2 23289 hauscmplem 23319 hauscmp 23320 clsconn 23343 conncompcld 23347 hausllycmp 23407 txcls 23517 ptclsg 23528 regr1lem 23652 kqreglem1 23654 kqreglem2 23655 kqnrmlem1 23656 kqnrmlem2 23657 fclscmpi 23942 flfcntr 23956 cnextfres 23982 clssubg 24022 tsmsid 24053 cnllycmp 24880 clsocv 25175 relcmpcmet 25243 bcthlem2 25250 bcthlem4 25252 limcnlp 25804 opnbnd 36358 opnregcld 36363 cldregopn 36364 heibor1lem 37848 heiborlem8 37857 sepdisj 48955 iscnrm3rlem4 48973 |
| Copyright terms: Public domain | W3C validator |