| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sscls | Structured version Visualization version GIF version | ||
| Description: A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| sscls | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintub 4919 | . 2 ⊢ 𝑆 ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} | |
| 2 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | clsval 22940 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
| 4 | 1, 3 | sseqtrrid 3981 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 ∪ cuni 4861 ∩ cint 4899 ‘cfv 6486 Topctop 22796 Clsdccld 22919 clsccl 22921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-top 22797 df-cld 22922 df-cls 22924 |
| This theorem is referenced by: iscld4 22968 elcls 22976 ntrcls0 22979 clslp 23051 restcls 23084 cncls2i 23173 nrmsep 23260 lpcls 23267 regsep2 23279 hauscmplem 23309 hauscmp 23310 clsconn 23333 conncompcld 23337 hausllycmp 23397 txcls 23507 ptclsg 23518 regr1lem 23642 kqreglem1 23644 kqreglem2 23645 kqnrmlem1 23646 kqnrmlem2 23647 fclscmpi 23932 flfcntr 23946 cnextfres 23972 clssubg 24012 tsmsid 24043 cnllycmp 24871 clsocv 25166 relcmpcmet 25234 bcthlem2 25241 bcthlem4 25243 limcnlp 25795 opnbnd 36298 opnregcld 36303 cldregopn 36304 heibor1lem 37788 heiborlem8 37797 sepdisj 48910 iscnrm3rlem4 48928 |
| Copyright terms: Public domain | W3C validator |