![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sscls | Structured version Visualization version GIF version |
Description: A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
sscls | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintub 4969 | . 2 ⊢ 𝑆 ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} | |
2 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | clsval 22523 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
4 | 1, 3 | sseqtrrid 4034 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3433 ⊆ wss 3947 ∪ cuni 4907 ∩ cint 4949 ‘cfv 6540 Topctop 22377 Clsdccld 22502 clsccl 22504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-top 22378 df-cld 22505 df-cls 22507 |
This theorem is referenced by: iscld4 22551 elcls 22559 ntrcls0 22562 clslp 22634 restcls 22667 cncls2i 22756 nrmsep 22843 lpcls 22850 regsep2 22862 hauscmplem 22892 hauscmp 22893 clsconn 22916 conncompcld 22920 hausllycmp 22980 txcls 23090 ptclsg 23101 regr1lem 23225 kqreglem1 23227 kqreglem2 23228 kqnrmlem1 23229 kqnrmlem2 23230 fclscmpi 23515 flfcntr 23529 cnextfres 23555 clssubg 23595 tsmsid 23626 cnllycmp 24454 clsocv 24749 relcmpcmet 24817 bcthlem2 24824 bcthlem4 24826 limcnlp 25377 opnbnd 35148 opnregcld 35153 cldregopn 35154 heibor1lem 36615 heiborlem8 36624 sepdisj 47459 iscnrm3rlem4 47478 |
Copyright terms: Public domain | W3C validator |