MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscls Structured version   Visualization version   GIF version

Theorem sscls 22560
Description: A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
sscls ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))

Proof of Theorem sscls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4971 . 2 𝑆 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥}
2 clscld.1 . . 3 𝑋 = 𝐽
32clsval 22541 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
41, 3sseqtrrid 4036 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {crab 3433  wss 3949   cuni 4909   cint 4951  cfv 6544  Topctop 22395  Clsdccld 22520  clsccl 22522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-top 22396  df-cld 22523  df-cls 22525
This theorem is referenced by:  iscld4  22569  elcls  22577  ntrcls0  22580  clslp  22652  restcls  22685  cncls2i  22774  nrmsep  22861  lpcls  22868  regsep2  22880  hauscmplem  22910  hauscmp  22911  clsconn  22934  conncompcld  22938  hausllycmp  22998  txcls  23108  ptclsg  23119  regr1lem  23243  kqreglem1  23245  kqreglem2  23246  kqnrmlem1  23247  kqnrmlem2  23248  fclscmpi  23533  flfcntr  23547  cnextfres  23573  clssubg  23613  tsmsid  23644  cnllycmp  24472  clsocv  24767  relcmpcmet  24835  bcthlem2  24842  bcthlem4  24844  limcnlp  25395  opnbnd  35210  opnregcld  35215  cldregopn  35216  heibor1lem  36677  heiborlem8  36686  sepdisj  47557  iscnrm3rlem4  47576
  Copyright terms: Public domain W3C validator