MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sslttr Structured version   Visualization version   GIF version

Theorem sslttr 27867
Description: Transitive law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sslttr ((𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅) → 𝐴 <<s 𝐶)

Proof of Theorem sslttr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4359 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
2 ssltex1 27846 . . . . . . 7 (𝐴 <<s 𝐵𝐴 ∈ V)
323ad2ant2 1133 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 ∈ V)
4 ssltex2 27847 . . . . . . 7 (𝐵 <<s 𝐶𝐶 ∈ V)
543ad2ant3 1134 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐶 ∈ V)
6 ssltss1 27848 . . . . . . 7 (𝐴 <<s 𝐵𝐴 No )
763ad2ant2 1133 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 No )
8 ssltss2 27849 . . . . . . 7 (𝐵 <<s 𝐶𝐶 No )
983ad2ant3 1134 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐶 No )
1073ad2ant1 1132 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐴 No )
11 simp2 1136 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥𝐴)
1210, 11sseldd 3996 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥 No )
13 ssltss2 27849 . . . . . . . . . 10 (𝐴 <<s 𝐵𝐵 No )
14133ad2ant2 1133 . . . . . . . . 9 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐵 No )
15143ad2ant1 1132 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐵 No )
16 simp11 1202 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑦𝐵)
1715, 16sseldd 3996 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑦 No )
1893ad2ant1 1132 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐶 No )
19 simp3 1137 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑧𝐶)
2018, 19sseldd 3996 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑧 No )
21 simp12 1203 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐴 <<s 𝐵)
2221, 11, 16ssltsepcd 27854 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥 <s 𝑦)
23 simp13 1204 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐵 <<s 𝐶)
2423, 16, 19ssltsepcd 27854 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑦 <s 𝑧)
2512, 17, 20, 22, 24slttrd 27819 . . . . . 6 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥 <s 𝑧)
263, 5, 7, 9, 25ssltd 27851 . . . . 5 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 <<s 𝐶)
27263exp 1118 . . . 4 (𝑦𝐵 → (𝐴 <<s 𝐵 → (𝐵 <<s 𝐶𝐴 <<s 𝐶)))
2827exlimiv 1928 . . 3 (∃𝑦 𝑦𝐵 → (𝐴 <<s 𝐵 → (𝐵 <<s 𝐶𝐴 <<s 𝐶)))
291, 28sylbi 217 . 2 (𝐵 ≠ ∅ → (𝐴 <<s 𝐵 → (𝐵 <<s 𝐶𝐴 <<s 𝐶)))
30293imp231 1112 1 ((𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅) → 𝐴 <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wex 1776  wcel 2106  wne 2938  Vcvv 3478  wss 3963  c0 4339   class class class wbr 5148   No csur 27699   <<s csslt 27840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-sslt 27841
This theorem is referenced by:  scutun12  27870  scutbdaylt  27878  cuteq0  27892  cuteq1  27893  lltropt  27926  cofcut1  27969  addscut2  28027  sleadd1  28037  addsuniflem  28049  addsasslem1  28051  addsasslem2  28052  negscut2  28087  mulscut2  28174
  Copyright terms: Public domain W3C validator