MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sslttr Structured version   Visualization version   GIF version

Theorem sslttr 27749
Description: Transitive law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sslttr ((𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅) → 𝐴 <<s 𝐶)

Proof of Theorem sslttr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4302 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
2 ssltex1 27727 . . . . . . 7 (𝐴 <<s 𝐵𝐴 ∈ V)
323ad2ant2 1134 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 ∈ V)
4 ssltex2 27728 . . . . . . 7 (𝐵 <<s 𝐶𝐶 ∈ V)
543ad2ant3 1135 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐶 ∈ V)
6 ssltss1 27729 . . . . . . 7 (𝐴 <<s 𝐵𝐴 No )
763ad2ant2 1134 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 No )
8 ssltss2 27730 . . . . . . 7 (𝐵 <<s 𝐶𝐶 No )
983ad2ant3 1135 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐶 No )
1073ad2ant1 1133 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐴 No )
11 simp2 1137 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥𝐴)
1210, 11sseldd 3931 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥 No )
13 ssltss2 27730 . . . . . . . . . 10 (𝐴 <<s 𝐵𝐵 No )
14133ad2ant2 1134 . . . . . . . . 9 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐵 No )
15143ad2ant1 1133 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐵 No )
16 simp11 1204 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑦𝐵)
1715, 16sseldd 3931 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑦 No )
1893ad2ant1 1133 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐶 No )
19 simp3 1138 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑧𝐶)
2018, 19sseldd 3931 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑧 No )
21 simp12 1205 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐴 <<s 𝐵)
2221, 11, 16ssltsepcd 27736 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥 <s 𝑦)
23 simp13 1206 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐵 <<s 𝐶)
2423, 16, 19ssltsepcd 27736 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑦 <s 𝑧)
2512, 17, 20, 22, 24slttrd 27699 . . . . . 6 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥 <s 𝑧)
263, 5, 7, 9, 25ssltd 27732 . . . . 5 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 <<s 𝐶)
27263exp 1119 . . . 4 (𝑦𝐵 → (𝐴 <<s 𝐵 → (𝐵 <<s 𝐶𝐴 <<s 𝐶)))
2827exlimiv 1931 . . 3 (∃𝑦 𝑦𝐵 → (𝐴 <<s 𝐵 → (𝐵 <<s 𝐶𝐴 <<s 𝐶)))
291, 28sylbi 217 . 2 (𝐵 ≠ ∅ → (𝐴 <<s 𝐵 → (𝐵 <<s 𝐶𝐴 <<s 𝐶)))
30293imp231 1112 1 ((𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅) → 𝐴 <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wex 1780  wcel 2113  wne 2929  Vcvv 3437  wss 3898  c0 4282   class class class wbr 5093   No csur 27579   <<s csslt 27721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-1o 8391  df-2o 8392  df-no 27582  df-slt 27583  df-sslt 27722
This theorem is referenced by:  scutun12  27752  scutbdaylt  27760  eqscut3  27766  cuteq0  27777  cuteq1  27779  lltropt  27818  cofcut1  27865  addscut2  27923  sleadd1  27933  addsuniflem  27945  addsasslem1  27947  addsasslem2  27948  negscut2  27983  mulscut2  28073
  Copyright terms: Public domain W3C validator