Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sslttr Structured version   Visualization version   GIF version

Theorem sslttr 34050
Description: Transitive law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sslttr ((𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅) → 𝐴 <<s 𝐶)

Proof of Theorem sslttr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4286 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
2 ssltex1 34030 . . . . . . 7 (𝐴 <<s 𝐵𝐴 ∈ V)
323ad2ant2 1134 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 ∈ V)
4 ssltex2 34031 . . . . . . 7 (𝐵 <<s 𝐶𝐶 ∈ V)
543ad2ant3 1135 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐶 ∈ V)
6 ssltss1 34032 . . . . . . 7 (𝐴 <<s 𝐵𝐴 No )
763ad2ant2 1134 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 No )
8 ssltss2 34033 . . . . . . 7 (𝐵 <<s 𝐶𝐶 No )
983ad2ant3 1135 . . . . . 6 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐶 No )
1073ad2ant1 1133 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐴 No )
11 simp2 1137 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥𝐴)
1210, 11sseldd 3927 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥 No )
13 ssltss2 34033 . . . . . . . . . 10 (𝐴 <<s 𝐵𝐵 No )
14133ad2ant2 1134 . . . . . . . . 9 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐵 No )
15143ad2ant1 1133 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐵 No )
16 simp11 1203 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑦𝐵)
1715, 16sseldd 3927 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑦 No )
1893ad2ant1 1133 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐶 No )
19 simp3 1138 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑧𝐶)
2018, 19sseldd 3927 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑧 No )
21 simp12 1204 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐴 <<s 𝐵)
2221, 11, 16ssltsepcd 34037 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥 <s 𝑦)
23 simp13 1205 . . . . . . . 8 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝐵 <<s 𝐶)
2423, 16, 19ssltsepcd 34037 . . . . . . 7 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑦 <s 𝑧)
2512, 17, 20, 22, 24slttrd 34011 . . . . . 6 (((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) ∧ 𝑥𝐴𝑧𝐶) → 𝑥 <s 𝑧)
263, 5, 7, 9, 25ssltd 34035 . . . . 5 ((𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 <<s 𝐶)
27263exp 1119 . . . 4 (𝑦𝐵 → (𝐴 <<s 𝐵 → (𝐵 <<s 𝐶𝐴 <<s 𝐶)))
2827exlimiv 1931 . . 3 (∃𝑦 𝑦𝐵 → (𝐴 <<s 𝐵 → (𝐵 <<s 𝐶𝐴 <<s 𝐶)))
291, 28sylbi 216 . 2 (𝐵 ≠ ∅ → (𝐴 <<s 𝐵 → (𝐵 <<s 𝐶𝐴 <<s 𝐶)))
30293imp231 1113 1 ((𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅) → 𝐴 <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wex 1779  wcel 2104  wne 2941  Vcvv 3437  wss 3892  c0 4262   class class class wbr 5081   No csur 33892   <<s csslt 34024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ord 6284  df-on 6285  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466  df-1o 8328  df-2o 8329  df-no 33895  df-slt 33896  df-sslt 34025
This theorem is referenced by:  scutun12  34053  scutbdaylt  34061  lltropt  34105  cofcut1  34139
  Copyright terms: Public domain W3C validator