Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sslttr Structured version   Visualization version   GIF version

Theorem sslttr 33562
Description: Transitive law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sslttr ((𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅) → 𝐴 <<s 𝐶)

Proof of Theorem sslttr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4245 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
2 ssltex1 33546 . . . . . . . . 9 (𝐴 <<s 𝐵𝐴 ∈ V)
3 ssltex2 33547 . . . . . . . . 9 (𝐵 <<s 𝐶𝐶 ∈ V)
42, 3anim12i 615 . . . . . . . 8 ((𝐴 <<s 𝐵𝐵 <<s 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
54adantl 485 . . . . . . 7 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
6 ssltss1 33548 . . . . . . . . 9 (𝐴 <<s 𝐵𝐴 No )
76ad2antrl 727 . . . . . . . 8 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → 𝐴 No )
8 ssltss2 33549 . . . . . . . . 9 (𝐵 <<s 𝐶𝐶 No )
98ad2antll 728 . . . . . . . 8 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → 𝐶 No )
107adantr 484 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝐴 No )
11 simprl 770 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑥𝐴)
1210, 11sseldd 3893 . . . . . . . . . 10 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑥 No )
13 ssltss1 33548 . . . . . . . . . . . . 13 (𝐵 <<s 𝐶𝐵 No )
1413ad2antll 728 . . . . . . . . . . . 12 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → 𝐵 No )
1514adantr 484 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝐵 No )
16 simpll 766 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑦𝐵)
1715, 16sseldd 3893 . . . . . . . . . 10 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑦 No )
189adantr 484 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝐶 No )
19 simprr 772 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑧𝐶)
2018, 19sseldd 3893 . . . . . . . . . 10 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑧 No )
21 ssltsep 33550 . . . . . . . . . . . . . 14 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
2221ad2antrl 727 . . . . . . . . . . . . 13 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
2322adantr 484 . . . . . . . . . . . 12 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
24 rsp 3134 . . . . . . . . . . . 12 (∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → (𝑥𝐴 → ∀𝑦𝐵 𝑥 <s 𝑦))
2523, 11, 24sylc 65 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → ∀𝑦𝐵 𝑥 <s 𝑦)
26 rsp 3134 . . . . . . . . . . 11 (∀𝑦𝐵 𝑥 <s 𝑦 → (𝑦𝐵𝑥 <s 𝑦))
2725, 16, 26sylc 65 . . . . . . . . . 10 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑥 <s 𝑦)
28 ssltsep 33550 . . . . . . . . . . . . . 14 (𝐵 <<s 𝐶 → ∀𝑦𝐵𝑧𝐶 𝑦 <s 𝑧)
2928ad2antll 728 . . . . . . . . . . . . 13 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → ∀𝑦𝐵𝑧𝐶 𝑦 <s 𝑧)
3029adantr 484 . . . . . . . . . . . 12 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → ∀𝑦𝐵𝑧𝐶 𝑦 <s 𝑧)
31 rsp 3134 . . . . . . . . . . . 12 (∀𝑦𝐵𝑧𝐶 𝑦 <s 𝑧 → (𝑦𝐵 → ∀𝑧𝐶 𝑦 <s 𝑧))
3230, 16, 31sylc 65 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → ∀𝑧𝐶 𝑦 <s 𝑧)
33 rsp 3134 . . . . . . . . . . 11 (∀𝑧𝐶 𝑦 <s 𝑧 → (𝑧𝐶𝑦 <s 𝑧))
3432, 19, 33sylc 65 . . . . . . . . . 10 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑦 <s 𝑧)
3512, 17, 20, 27, 34slttrd 33527 . . . . . . . . 9 (((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) ∧ (𝑥𝐴𝑧𝐶)) → 𝑥 <s 𝑧)
3635ralrimivva 3120 . . . . . . . 8 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → ∀𝑥𝐴𝑧𝐶 𝑥 <s 𝑧)
377, 9, 363jca 1125 . . . . . . 7 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → (𝐴 No 𝐶 No ∧ ∀𝑥𝐴𝑧𝐶 𝑥 <s 𝑧))
38 brsslt 33545 . . . . . . 7 (𝐴 <<s 𝐶 ↔ ((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴 No 𝐶 No ∧ ∀𝑥𝐴𝑧𝐶 𝑥 <s 𝑧)))
395, 37, 38sylanbrc 586 . . . . . 6 ((𝑦𝐵 ∧ (𝐴 <<s 𝐵𝐵 <<s 𝐶)) → 𝐴 <<s 𝐶)
4039ex 416 . . . . 5 (𝑦𝐵 → ((𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 <<s 𝐶))
4140exlimiv 1931 . . . 4 (∃𝑦 𝑦𝐵 → ((𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 <<s 𝐶))
421, 41sylbi 220 . . 3 (𝐵 ≠ ∅ → ((𝐴 <<s 𝐵𝐵 <<s 𝐶) → 𝐴 <<s 𝐶))
4342com12 32 . 2 ((𝐴 <<s 𝐵𝐵 <<s 𝐶) → (𝐵 ≠ ∅ → 𝐴 <<s 𝐶))
44433impia 1114 1 ((𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅) → 𝐴 <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wex 1781  wcel 2111  wne 2951  wral 3070  Vcvv 3409  wss 3858  c0 4225   class class class wbr 5032   No csur 33408   <s cslt 33409   <<s csslt 33540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-fv 6343  df-1o 8112  df-2o 8113  df-no 33411  df-slt 33412  df-sslt 33541
This theorem is referenced by:  scutun12  33565  scutbdaylt  33573  lltropt  33612
  Copyright terms: Public domain W3C validator