MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgreldmiedg Structured version   Visualization version   GIF version

Theorem subgreldmiedg 29301
Description: An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020.)
Assertion
Ref Expression
subgreldmiedg ((𝑆 SubGraph 𝐺𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺))

Proof of Theorem subgreldmiedg
StepHypRef Expression
1 eqid 2736 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2736 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2736 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2736 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 eqid 2736 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 29292 . . 3 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
7 dmss 5912 . . . . 5 ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺))
873ad2ant2 1134 . . . 4 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺))
98sseld 3981 . . 3 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺)))
106, 9syl 17 . 2 (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺)))
1110imp 406 1 ((𝑆 SubGraph 𝐺𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2107  wss 3950  𝒫 cpw 4599   class class class wbr 5142  dom cdm 5684  cfv 6560  Vtxcvtx 29014  iEdgciedg 29015  Edgcedg 29065   SubGraph csubgr 29285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-xp 5690  df-rel 5691  df-dm 5694  df-res 5696  df-iota 6513  df-fv 6568  df-subgr 29286
This theorem is referenced by:  subgruhgredgd  29302  subumgredg2  29303  subupgr  29305
  Copyright terms: Public domain W3C validator