MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgreldmiedg Structured version   Visualization version   GIF version

Theorem subgreldmiedg 29256
Description: An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020.)
Assertion
Ref Expression
subgreldmiedg ((𝑆 SubGraph 𝐺𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺))

Proof of Theorem subgreldmiedg
StepHypRef Expression
1 eqid 2731 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2731 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2731 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2731 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 eqid 2731 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 29247 . . 3 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
7 dmss 5837 . . . . 5 ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺))
873ad2ant2 1134 . . . 4 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺))
98sseld 3928 . . 3 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺)))
106, 9syl 17 . 2 (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺)))
1110imp 406 1 ((𝑆 SubGraph 𝐺𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111  wss 3897  𝒫 cpw 4545   class class class wbr 5086  dom cdm 5611  cfv 6476  Vtxcvtx 28969  iEdgciedg 28970  Edgcedg 29020   SubGraph csubgr 29240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-dm 5621  df-res 5623  df-iota 6432  df-fv 6484  df-subgr 29241
This theorem is referenced by:  subgruhgredgd  29257  subumgredg2  29258  subupgr  29260
  Copyright terms: Public domain W3C validator