| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgreldmiedg | Structured version Visualization version GIF version | ||
| Description: An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020.) |
| Ref | Expression |
|---|---|
| subgreldmiedg | ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
| 2 | eqid 2736 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 3 | eqid 2736 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
| 4 | eqid 2736 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 5 | eqid 2736 | . . . 4 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
| 6 | 1, 2, 3, 4, 5 | subgrprop2 29258 | . . 3 ⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
| 7 | dmss 5887 | . . . . 5 ⊢ ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺)) | |
| 8 | 7 | 3ad2ant2 1134 | . . . 4 ⊢ (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺)) |
| 9 | 8 | sseld 3962 | . . 3 ⊢ (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺))) |
| 10 | 6, 9 | syl 17 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺))) |
| 11 | 10 | imp 406 | 1 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3931 𝒫 cpw 4580 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 Vtxcvtx 28980 iEdgciedg 28981 Edgcedg 29031 SubGraph csubgr 29251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-dm 5669 df-res 5671 df-iota 6489 df-fv 6544 df-subgr 29252 |
| This theorem is referenced by: subgruhgredgd 29268 subumgredg2 29269 subupgr 29271 |
| Copyright terms: Public domain | W3C validator |