![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgreldmiedg | Structured version Visualization version GIF version |
Description: An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
subgreldmiedg | ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
2 | eqid 2731 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2731 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
4 | eqid 2731 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
5 | eqid 2731 | . . . 4 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
6 | 1, 2, 3, 4, 5 | subgrprop2 28799 | . . 3 ⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
7 | dmss 5902 | . . . . 5 ⊢ ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺)) | |
8 | 7 | 3ad2ant2 1133 | . . . 4 ⊢ (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺)) |
9 | 8 | sseld 3981 | . . 3 ⊢ (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺))) |
10 | 6, 9 | syl 17 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺))) |
11 | 10 | imp 406 | 1 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ⊆ wss 3948 𝒫 cpw 4602 class class class wbr 5148 dom cdm 5676 ‘cfv 6543 Vtxcvtx 28524 iEdgciedg 28525 Edgcedg 28575 SubGraph csubgr 28792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-dm 5686 df-res 5688 df-iota 6495 df-fv 6551 df-subgr 28793 |
This theorem is referenced by: subgruhgredgd 28809 subumgredg2 28810 subupgr 28812 |
Copyright terms: Public domain | W3C validator |