Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgreldmiedg | Structured version Visualization version GIF version |
Description: An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
subgreldmiedg | ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
2 | eqid 2738 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2738 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
4 | eqid 2738 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
5 | eqid 2738 | . . . 4 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
6 | 1, 2, 3, 4, 5 | subgrprop2 27641 | . . 3 ⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
7 | dmss 5811 | . . . . 5 ⊢ ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺)) | |
8 | 7 | 3ad2ant2 1133 | . . . 4 ⊢ (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺)) |
9 | 8 | sseld 3920 | . . 3 ⊢ (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺))) |
10 | 6, 9 | syl 17 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺))) |
11 | 10 | imp 407 | 1 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 Vtxcvtx 27366 iEdgciedg 27367 Edgcedg 27417 SubGraph csubgr 27634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-res 5601 df-iota 6391 df-fv 6441 df-subgr 27635 |
This theorem is referenced by: subgruhgredgd 27651 subumgredg2 27652 subupgr 27654 |
Copyright terms: Public domain | W3C validator |