MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgruhgredgd Structured version   Visualization version   GIF version

Theorem subgruhgredgd 29268
Description: An edge of a subgraph of a hypergraph is a nonempty subset of its vertices. (Contributed by AV, 17-Nov-2020.) (Revised by AV, 21-Nov-2020.)
Hypotheses
Ref Expression
subgruhgredgd.v 𝑉 = (Vtx‘𝑆)
subgruhgredgd.i 𝐼 = (iEdg‘𝑆)
subgruhgredgd.g (𝜑𝐺 ∈ UHGraph)
subgruhgredgd.s (𝜑𝑆 SubGraph 𝐺)
subgruhgredgd.x (𝜑𝑋 ∈ dom 𝐼)
Assertion
Ref Expression
subgruhgredgd (𝜑 → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))

Proof of Theorem subgruhgredgd
StepHypRef Expression
1 subgruhgredgd.s . . 3 (𝜑𝑆 SubGraph 𝐺)
2 subgruhgredgd.v . . . 4 𝑉 = (Vtx‘𝑆)
3 eqid 2736 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
4 subgruhgredgd.i . . . 4 𝐼 = (iEdg‘𝑆)
5 eqid 2736 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
6 eqid 2736 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
72, 3, 4, 5, 6subgrprop2 29258 . . 3 (𝑆 SubGraph 𝐺 → (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))
81, 7syl 17 . 2 (𝜑 → (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))
9 simpr3 1197 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (Edg‘𝑆) ⊆ 𝒫 𝑉)
10 subgruhgredgd.g . . . . . . . . 9 (𝜑𝐺 ∈ UHGraph)
11 subgruhgrfun 29266 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
1210, 1, 11syl2anc 584 . . . . . . . 8 (𝜑 → Fun (iEdg‘𝑆))
13 subgruhgredgd.x . . . . . . . . 9 (𝜑𝑋 ∈ dom 𝐼)
144dmeqi 5889 . . . . . . . . 9 dom 𝐼 = dom (iEdg‘𝑆)
1513, 14eleqtrdi 2845 . . . . . . . 8 (𝜑𝑋 ∈ dom (iEdg‘𝑆))
1612, 15jca 511 . . . . . . 7 (𝜑 → (Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)))
1716adantr 480 . . . . . 6 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)))
184fveq1i 6882 . . . . . . 7 (𝐼𝑋) = ((iEdg‘𝑆)‘𝑋)
19 fvelrn 7071 . . . . . . 7 ((Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑋) ∈ ran (iEdg‘𝑆))
2018, 19eqeltrid 2839 . . . . . 6 ((Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → (𝐼𝑋) ∈ ran (iEdg‘𝑆))
2117, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ ran (iEdg‘𝑆))
22 edgval 29033 . . . . 5 (Edg‘𝑆) = ran (iEdg‘𝑆)
2321, 22eleqtrrdi 2846 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ (Edg‘𝑆))
249, 23sseldd 3964 . . 3 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ 𝒫 𝑉)
255uhgrfun 29050 . . . . . . 7 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2610, 25syl 17 . . . . . 6 (𝜑 → Fun (iEdg‘𝐺))
2726adantr 480 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → Fun (iEdg‘𝐺))
28 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝐼 ⊆ (iEdg‘𝐺))
2913adantr 480 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝑋 ∈ dom 𝐼)
30 funssfv 6902 . . . . . 6 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼𝑋))
3130eqcomd 2742 . . . . 5 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
3227, 28, 29, 31syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
3310adantr 480 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝐺 ∈ UHGraph)
3426funfnd 6572 . . . . . 6 (𝜑 → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
3534adantr 480 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
36 subgreldmiedg 29267 . . . . . . 7 ((𝑆 SubGraph 𝐺𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺))
371, 15, 36syl2anc 584 . . . . . 6 (𝜑𝑋 ∈ dom (iEdg‘𝐺))
3837adantr 480 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝑋 ∈ dom (iEdg‘𝐺))
395uhgrn0 29051 . . . . 5 ((𝐺 ∈ UHGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ 𝑋 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑋) ≠ ∅)
4033, 35, 38, 39syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → ((iEdg‘𝐺)‘𝑋) ≠ ∅)
4132, 40eqnetrd 3000 . . 3 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ≠ ∅)
42 eldifsn 4767 . . 3 ((𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}) ↔ ((𝐼𝑋) ∈ 𝒫 𝑉 ∧ (𝐼𝑋) ≠ ∅))
4324, 41, 42sylanbrc 583 . 2 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))
448, 43mpdan 687 1 (𝜑 → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  cdif 3928  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   class class class wbr 5124  dom cdm 5659  ran crn 5660  Fun wfun 6530   Fn wfn 6531  cfv 6536  Vtxcvtx 28980  iEdgciedg 28981  Edgcedg 29031  UHGraphcuhgr 29040   SubGraph csubgr 29251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-edg 29032  df-uhgr 29042  df-subgr 29252
This theorem is referenced by:  subumgredg2  29269  subuhgr  29270  subupgr  29271
  Copyright terms: Public domain W3C validator