Proof of Theorem subgruhgredgd
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | subgruhgredgd.s | . . 3
⊢ (𝜑 → 𝑆 SubGraph 𝐺) | 
| 2 |  | subgruhgredgd.v | . . . 4
⊢ 𝑉 = (Vtx‘𝑆) | 
| 3 |  | eqid 2736 | . . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) | 
| 4 |  | subgruhgredgd.i | . . . 4
⊢ 𝐼 = (iEdg‘𝑆) | 
| 5 |  | eqid 2736 | . . . 4
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) | 
| 6 |  | eqid 2736 | . . . 4
⊢
(Edg‘𝑆) =
(Edg‘𝑆) | 
| 7 | 2, 3, 4, 5, 6 | subgrprop2 29292 | . . 3
⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) | 
| 8 | 1, 7 | syl 17 | . 2
⊢ (𝜑 → (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) | 
| 9 |  | simpr3 1196 | . . . 4
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (Edg‘𝑆) ⊆ 𝒫 𝑉) | 
| 10 |  | subgruhgredgd.g | . . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ UHGraph) | 
| 11 |  | subgruhgrfun 29300 | . . . . . . . . 9
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) | 
| 12 | 10, 1, 11 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → Fun (iEdg‘𝑆)) | 
| 13 |  | subgruhgredgd.x | . . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ dom 𝐼) | 
| 14 | 4 | dmeqi 5914 | . . . . . . . . 9
⊢ dom 𝐼 = dom (iEdg‘𝑆) | 
| 15 | 13, 14 | eleqtrdi 2850 | . . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ dom (iEdg‘𝑆)) | 
| 16 | 12, 15 | jca 511 | . . . . . . 7
⊢ (𝜑 → (Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆))) | 
| 17 | 16 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆))) | 
| 18 | 4 | fveq1i 6906 | . . . . . . 7
⊢ (𝐼‘𝑋) = ((iEdg‘𝑆)‘𝑋) | 
| 19 |  | fvelrn 7095 | . . . . . . 7
⊢ ((Fun
(iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑋) ∈ ran (iEdg‘𝑆)) | 
| 20 | 18, 19 | eqeltrid 2844 | . . . . . 6
⊢ ((Fun
(iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → (𝐼‘𝑋) ∈ ran (iEdg‘𝑆)) | 
| 21 | 17, 20 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼‘𝑋) ∈ ran (iEdg‘𝑆)) | 
| 22 |  | edgval 29067 | . . . . 5
⊢
(Edg‘𝑆) = ran
(iEdg‘𝑆) | 
| 23 | 21, 22 | eleqtrrdi 2851 | . . . 4
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼‘𝑋) ∈ (Edg‘𝑆)) | 
| 24 | 9, 23 | sseldd 3983 | . . 3
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼‘𝑋) ∈ 𝒫 𝑉) | 
| 25 | 5 | uhgrfun 29084 | . . . . . . 7
⊢ (𝐺 ∈ UHGraph → Fun
(iEdg‘𝐺)) | 
| 26 | 10, 25 | syl 17 | . . . . . 6
⊢ (𝜑 → Fun (iEdg‘𝐺)) | 
| 27 | 26 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → Fun (iEdg‘𝐺)) | 
| 28 |  | simpr2 1195 | . . . . 5
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝐼 ⊆ (iEdg‘𝐺)) | 
| 29 | 13 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝑋 ∈ dom 𝐼) | 
| 30 |  | funssfv 6926 | . . . . . 6
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼‘𝑋)) | 
| 31 | 30 | eqcomd 2742 | . . . . 5
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((iEdg‘𝐺)‘𝑋)) | 
| 32 | 27, 28, 29, 31 | syl3anc 1372 | . . . 4
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼‘𝑋) = ((iEdg‘𝐺)‘𝑋)) | 
| 33 | 10 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝐺 ∈ UHGraph) | 
| 34 | 26 | funfnd 6596 | . . . . . 6
⊢ (𝜑 → (iEdg‘𝐺) Fn dom (iEdg‘𝐺)) | 
| 35 | 34 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺)) | 
| 36 |  | subgreldmiedg 29301 | . . . . . . 7
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺)) | 
| 37 | 1, 15, 36 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → 𝑋 ∈ dom (iEdg‘𝐺)) | 
| 38 | 37 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝑋 ∈ dom (iEdg‘𝐺)) | 
| 39 | 5 | uhgrn0 29085 | . . . . 5
⊢ ((𝐺 ∈ UHGraph ∧
(iEdg‘𝐺) Fn dom
(iEdg‘𝐺) ∧ 𝑋 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑋) ≠ ∅) | 
| 40 | 33, 35, 38, 39 | syl3anc 1372 | . . . 4
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → ((iEdg‘𝐺)‘𝑋) ≠ ∅) | 
| 41 | 32, 40 | eqnetrd 3007 | . . 3
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼‘𝑋) ≠ ∅) | 
| 42 |  | eldifsn 4785 | . . 3
⊢ ((𝐼‘𝑋) ∈ (𝒫 𝑉 ∖ {∅}) ↔ ((𝐼‘𝑋) ∈ 𝒫 𝑉 ∧ (𝐼‘𝑋) ≠ ∅)) | 
| 43 | 24, 41, 42 | sylanbrc 583 | . 2
⊢ ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼‘𝑋) ∈ (𝒫 𝑉 ∖ {∅})) | 
| 44 | 8, 43 | mpdan 687 | 1
⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝒫 𝑉 ∖ {∅})) |