MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgruhgredgd Structured version   Visualization version   GIF version

Theorem subgruhgredgd 29136
Description: An edge of a subgraph of a hypergraph is a nonempty subset of its vertices. (Contributed by AV, 17-Nov-2020.) (Revised by AV, 21-Nov-2020.)
Hypotheses
Ref Expression
subgruhgredgd.v 𝑉 = (Vtx‘𝑆)
subgruhgredgd.i 𝐼 = (iEdg‘𝑆)
subgruhgredgd.g (𝜑𝐺 ∈ UHGraph)
subgruhgredgd.s (𝜑𝑆 SubGraph 𝐺)
subgruhgredgd.x (𝜑𝑋 ∈ dom 𝐼)
Assertion
Ref Expression
subgruhgredgd (𝜑 → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))

Proof of Theorem subgruhgredgd
StepHypRef Expression
1 subgruhgredgd.s . . 3 (𝜑𝑆 SubGraph 𝐺)
2 subgruhgredgd.v . . . 4 𝑉 = (Vtx‘𝑆)
3 eqid 2725 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
4 subgruhgredgd.i . . . 4 𝐼 = (iEdg‘𝑆)
5 eqid 2725 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
6 eqid 2725 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
72, 3, 4, 5, 6subgrprop2 29126 . . 3 (𝑆 SubGraph 𝐺 → (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))
81, 7syl 17 . 2 (𝜑 → (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))
9 simpr3 1193 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (Edg‘𝑆) ⊆ 𝒫 𝑉)
10 subgruhgredgd.g . . . . . . . . 9 (𝜑𝐺 ∈ UHGraph)
11 subgruhgrfun 29134 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
1210, 1, 11syl2anc 582 . . . . . . . 8 (𝜑 → Fun (iEdg‘𝑆))
13 subgruhgredgd.x . . . . . . . . 9 (𝜑𝑋 ∈ dom 𝐼)
144dmeqi 5902 . . . . . . . . 9 dom 𝐼 = dom (iEdg‘𝑆)
1513, 14eleqtrdi 2835 . . . . . . . 8 (𝜑𝑋 ∈ dom (iEdg‘𝑆))
1612, 15jca 510 . . . . . . 7 (𝜑 → (Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)))
1716adantr 479 . . . . . 6 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)))
184fveq1i 6891 . . . . . . 7 (𝐼𝑋) = ((iEdg‘𝑆)‘𝑋)
19 fvelrn 7079 . . . . . . 7 ((Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑋) ∈ ran (iEdg‘𝑆))
2018, 19eqeltrid 2829 . . . . . 6 ((Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → (𝐼𝑋) ∈ ran (iEdg‘𝑆))
2117, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ ran (iEdg‘𝑆))
22 edgval 28901 . . . . 5 (Edg‘𝑆) = ran (iEdg‘𝑆)
2321, 22eleqtrrdi 2836 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ (Edg‘𝑆))
249, 23sseldd 3974 . . 3 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ 𝒫 𝑉)
255uhgrfun 28918 . . . . . . 7 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2610, 25syl 17 . . . . . 6 (𝜑 → Fun (iEdg‘𝐺))
2726adantr 479 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → Fun (iEdg‘𝐺))
28 simpr2 1192 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝐼 ⊆ (iEdg‘𝐺))
2913adantr 479 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝑋 ∈ dom 𝐼)
30 funssfv 6911 . . . . . 6 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼𝑋))
3130eqcomd 2731 . . . . 5 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
3227, 28, 29, 31syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
3310adantr 479 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝐺 ∈ UHGraph)
3426funfnd 6579 . . . . . 6 (𝜑 → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
3534adantr 479 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
36 subgreldmiedg 29135 . . . . . . 7 ((𝑆 SubGraph 𝐺𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺))
371, 15, 36syl2anc 582 . . . . . 6 (𝜑𝑋 ∈ dom (iEdg‘𝐺))
3837adantr 479 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝑋 ∈ dom (iEdg‘𝐺))
395uhgrn0 28919 . . . . 5 ((𝐺 ∈ UHGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ 𝑋 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑋) ≠ ∅)
4033, 35, 38, 39syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → ((iEdg‘𝐺)‘𝑋) ≠ ∅)
4132, 40eqnetrd 2998 . . 3 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ≠ ∅)
42 eldifsn 4787 . . 3 ((𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}) ↔ ((𝐼𝑋) ∈ 𝒫 𝑉 ∧ (𝐼𝑋) ≠ ∅))
4324, 41, 42sylanbrc 581 . 2 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))
448, 43mpdan 685 1 (𝜑 → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930  cdif 3938  wss 3941  c0 4319  𝒫 cpw 4599  {csn 4625   class class class wbr 5144  dom cdm 5673  ran crn 5674  Fun wfun 6537   Fn wfn 6538  cfv 6543  Vtxcvtx 28848  iEdgciedg 28849  Edgcedg 28899  UHGraphcuhgr 28908   SubGraph csubgr 29119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-edg 28900  df-uhgr 28910  df-subgr 29120
This theorem is referenced by:  subumgredg2  29137  subuhgr  29138  subupgr  29139
  Copyright terms: Public domain W3C validator