MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgruhgredgd Structured version   Visualization version   GIF version

Theorem subgruhgredgd 29187
Description: An edge of a subgraph of a hypergraph is a nonempty subset of its vertices. (Contributed by AV, 17-Nov-2020.) (Revised by AV, 21-Nov-2020.)
Hypotheses
Ref Expression
subgruhgredgd.v 𝑉 = (Vtx‘𝑆)
subgruhgredgd.i 𝐼 = (iEdg‘𝑆)
subgruhgredgd.g (𝜑𝐺 ∈ UHGraph)
subgruhgredgd.s (𝜑𝑆 SubGraph 𝐺)
subgruhgredgd.x (𝜑𝑋 ∈ dom 𝐼)
Assertion
Ref Expression
subgruhgredgd (𝜑 → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))

Proof of Theorem subgruhgredgd
StepHypRef Expression
1 subgruhgredgd.s . . 3 (𝜑𝑆 SubGraph 𝐺)
2 subgruhgredgd.v . . . 4 𝑉 = (Vtx‘𝑆)
3 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
4 subgruhgredgd.i . . . 4 𝐼 = (iEdg‘𝑆)
5 eqid 2729 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
6 eqid 2729 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
72, 3, 4, 5, 6subgrprop2 29177 . . 3 (𝑆 SubGraph 𝐺 → (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))
81, 7syl 17 . 2 (𝜑 → (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉))
9 simpr3 1197 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (Edg‘𝑆) ⊆ 𝒫 𝑉)
10 subgruhgredgd.g . . . . . . . . 9 (𝜑𝐺 ∈ UHGraph)
11 subgruhgrfun 29185 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
1210, 1, 11syl2anc 584 . . . . . . . 8 (𝜑 → Fun (iEdg‘𝑆))
13 subgruhgredgd.x . . . . . . . . 9 (𝜑𝑋 ∈ dom 𝐼)
144dmeqi 5858 . . . . . . . . 9 dom 𝐼 = dom (iEdg‘𝑆)
1513, 14eleqtrdi 2838 . . . . . . . 8 (𝜑𝑋 ∈ dom (iEdg‘𝑆))
1612, 15jca 511 . . . . . . 7 (𝜑 → (Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)))
1716adantr 480 . . . . . 6 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)))
184fveq1i 6841 . . . . . . 7 (𝐼𝑋) = ((iEdg‘𝑆)‘𝑋)
19 fvelrn 7030 . . . . . . 7 ((Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑋) ∈ ran (iEdg‘𝑆))
2018, 19eqeltrid 2832 . . . . . 6 ((Fun (iEdg‘𝑆) ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → (𝐼𝑋) ∈ ran (iEdg‘𝑆))
2117, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ ran (iEdg‘𝑆))
22 edgval 28952 . . . . 5 (Edg‘𝑆) = ran (iEdg‘𝑆)
2321, 22eleqtrrdi 2839 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ (Edg‘𝑆))
249, 23sseldd 3944 . . 3 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ 𝒫 𝑉)
255uhgrfun 28969 . . . . . . 7 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2610, 25syl 17 . . . . . 6 (𝜑 → Fun (iEdg‘𝐺))
2726adantr 480 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → Fun (iEdg‘𝐺))
28 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝐼 ⊆ (iEdg‘𝐺))
2913adantr 480 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝑋 ∈ dom 𝐼)
30 funssfv 6861 . . . . . 6 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼𝑋))
3130eqcomd 2735 . . . . 5 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
3227, 28, 29, 31syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
3310adantr 480 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝐺 ∈ UHGraph)
3426funfnd 6531 . . . . . 6 (𝜑 → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
3534adantr 480 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
36 subgreldmiedg 29186 . . . . . . 7 ((𝑆 SubGraph 𝐺𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺))
371, 15, 36syl2anc 584 . . . . . 6 (𝜑𝑋 ∈ dom (iEdg‘𝐺))
3837adantr 480 . . . . 5 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → 𝑋 ∈ dom (iEdg‘𝐺))
395uhgrn0 28970 . . . . 5 ((𝐺 ∈ UHGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ 𝑋 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑋) ≠ ∅)
4033, 35, 38, 39syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → ((iEdg‘𝐺)‘𝑋) ≠ ∅)
4132, 40eqnetrd 2992 . . 3 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ≠ ∅)
42 eldifsn 4746 . . 3 ((𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}) ↔ ((𝐼𝑋) ∈ 𝒫 𝑉 ∧ (𝐼𝑋) ≠ ∅))
4324, 41, 42sylanbrc 583 . 2 ((𝜑 ∧ (𝑉 ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 𝑉)) → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))
448, 43mpdan 687 1 (𝜑 → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   class class class wbr 5102  dom cdm 5631  ran crn 5632  Fun wfun 6493   Fn wfn 6494  cfv 6499  Vtxcvtx 28899  iEdgciedg 28900  Edgcedg 28950  UHGraphcuhgr 28959   SubGraph csubgr 29170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-edg 28951  df-uhgr 28961  df-subgr 29171
This theorem is referenced by:  subumgredg2  29188  subuhgr  29189  subupgr  29190
  Copyright terms: Public domain W3C validator