MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subumgredg2 Structured version   Visualization version   GIF version

Theorem subumgredg2 29263
Description: An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020.)
Hypotheses
Ref Expression
subumgredg2.v 𝑉 = (Vtx‘𝑆)
subumgredg2.i 𝐼 = (iEdg‘𝑆)
Assertion
Ref Expression
subumgredg2 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
Distinct variable groups:   𝑒,𝐼   𝑒,𝑉   𝑒,𝑋
Allowed substitution hints:   𝑆(𝑒)   𝐺(𝑒)

Proof of Theorem subumgredg2
StepHypRef Expression
1 fveqeq2 6831 . . 3 (𝑒 = (𝐼𝑋) → ((♯‘𝑒) = 2 ↔ (♯‘(𝐼𝑋)) = 2))
2 subumgredg2.v . . . 4 𝑉 = (Vtx‘𝑆)
3 subumgredg2.i . . . 4 𝐼 = (iEdg‘𝑆)
4 umgruhgr 29082 . . . . 5 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
543ad2ant2 1134 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UHGraph)
6 simp1 1136 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑆 SubGraph 𝐺)
7 simp3 1138 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼)
82, 3, 5, 6, 7subgruhgredgd 29262 . . 3 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))
9 eqid 2731 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
109uhgrfun 29044 . . . . . . . 8 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
114, 10syl 17 . . . . . . 7 (𝐺 ∈ UMGraph → Fun (iEdg‘𝐺))
12113ad2ant2 1134 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → Fun (iEdg‘𝐺))
13 eqid 2731 . . . . . . . . 9 (Vtx‘𝑆) = (Vtx‘𝑆)
14 eqid 2731 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
15 eqid 2731 . . . . . . . . 9 (Edg‘𝑆) = (Edg‘𝑆)
1613, 14, 3, 9, 15subgrprop2 29252 . . . . . . . 8 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
1716simp2d 1143 . . . . . . 7 (𝑆 SubGraph 𝐺𝐼 ⊆ (iEdg‘𝐺))
18173ad2ant1 1133 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 ⊆ (iEdg‘𝐺))
19 funssfv 6843 . . . . . . 7 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼𝑋))
2019eqcomd 2737 . . . . . 6 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
2112, 18, 7, 20syl3anc 1373 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
2221fveq2d 6826 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) = (♯‘((iEdg‘𝐺)‘𝑋)))
23 simp2 1137 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UMGraph)
243dmeqi 5843 . . . . . . . . 9 dom 𝐼 = dom (iEdg‘𝑆)
2524eleq2i 2823 . . . . . . . 8 (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝑆))
26 subgreldmiedg 29261 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺))
2726ex 412 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺)))
2825, 27biimtrid 242 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝐺)))
2928a1d 25 . . . . . 6 (𝑆 SubGraph 𝐺 → (𝐺 ∈ UMGraph → (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝐺))))
30293imp 1110 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom (iEdg‘𝐺))
3114, 9umgredg2 29078 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2)
3223, 30, 31syl2anc 584 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2)
3322, 32eqtrd 2766 . . 3 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) = 2)
341, 8, 33elrabd 3644 . 2 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑒) = 2})
35 prprrab 14380 . 2 {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑒) = 2} = {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
3634, 35eleqtrdi 2841 1 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  cdif 3894  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573   class class class wbr 5089  dom cdm 5614  Fun wfun 6475  cfv 6481  2c2 12180  chash 14237  Vtxcvtx 28974  iEdgciedg 28975  Edgcedg 29025  UHGraphcuhgr 29034  UMGraphcumgr 29059   SubGraph csubgr 29245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-umgr 29061  df-subgr 29246
This theorem is referenced by:  subumgr  29266  subusgr  29267
  Copyright terms: Public domain W3C validator