![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subumgredg2 | Structured version Visualization version GIF version |
Description: An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020.) |
Ref | Expression |
---|---|
subumgredg2.v | ⊢ 𝑉 = (Vtx‘𝑆) |
subumgredg2.i | ⊢ 𝐼 = (iEdg‘𝑆) |
Ref | Expression |
---|---|
subumgredg2 | ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6897 | . . 3 ⊢ (𝑒 = (𝐼‘𝑋) → ((♯‘𝑒) = 2 ↔ (♯‘(𝐼‘𝑋)) = 2)) | |
2 | subumgredg2.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝑆) | |
3 | subumgredg2.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝑆) | |
4 | umgruhgr 28353 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
5 | 4 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UHGraph) |
6 | simp1 1136 | . . . 4 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑆 SubGraph 𝐺) | |
7 | simp3 1138 | . . . 4 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼) | |
8 | 2, 3, 5, 6, 7 | subgruhgredgd 28530 | . . 3 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ (𝒫 𝑉 ∖ {∅})) |
9 | eqid 2732 | . . . . . . . . 9 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
10 | 9 | uhgrfun 28315 | . . . . . . . 8 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
11 | 4, 10 | syl 17 | . . . . . . 7 ⊢ (𝐺 ∈ UMGraph → Fun (iEdg‘𝐺)) |
12 | 11 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → Fun (iEdg‘𝐺)) |
13 | eqid 2732 | . . . . . . . . 9 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
14 | eqid 2732 | . . . . . . . . 9 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
15 | eqid 2732 | . . . . . . . . 9 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
16 | 13, 14, 3, 9, 15 | subgrprop2 28520 | . . . . . . . 8 ⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
17 | 16 | simp2d 1143 | . . . . . . 7 ⊢ (𝑆 SubGraph 𝐺 → 𝐼 ⊆ (iEdg‘𝐺)) |
18 | 17 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 ⊆ (iEdg‘𝐺)) |
19 | funssfv 6909 | . . . . . . 7 ⊢ ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼‘𝑋)) | |
20 | 19 | eqcomd 2738 | . . . . . 6 ⊢ ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((iEdg‘𝐺)‘𝑋)) |
21 | 12, 18, 7, 20 | syl3anc 1371 | . . . . 5 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((iEdg‘𝐺)‘𝑋)) |
22 | 21 | fveq2d 6892 | . . . 4 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) = (♯‘((iEdg‘𝐺)‘𝑋))) |
23 | simp2 1137 | . . . . 5 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UMGraph) | |
24 | 3 | dmeqi 5902 | . . . . . . . . 9 ⊢ dom 𝐼 = dom (iEdg‘𝑆) |
25 | 24 | eleq2i 2825 | . . . . . . . 8 ⊢ (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom (iEdg‘𝑆)) |
26 | subgreldmiedg 28529 | . . . . . . . . 9 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺)) | |
27 | 26 | ex 413 | . . . . . . . 8 ⊢ (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺))) |
28 | 25, 27 | biimtrid 241 | . . . . . . 7 ⊢ (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom (iEdg‘𝐺))) |
29 | 28 | a1d 25 | . . . . . 6 ⊢ (𝑆 SubGraph 𝐺 → (𝐺 ∈ UMGraph → (𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom (iEdg‘𝐺)))) |
30 | 29 | 3imp 1111 | . . . . 5 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom (iEdg‘𝐺)) |
31 | 14, 9 | umgredg2 28349 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2) |
32 | 23, 30, 31 | syl2anc 584 | . . . 4 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2) |
33 | 22, 32 | eqtrd 2772 | . . 3 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) = 2) |
34 | 1, 8, 33 | elrabd 3684 | . 2 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑒) = 2}) |
35 | prprrab 14430 | . 2 ⊢ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑒) = 2} = {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | |
36 | 34, 35 | eleqtrdi 2843 | 1 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {crab 3432 ∖ cdif 3944 ⊆ wss 3947 ∅c0 4321 𝒫 cpw 4601 {csn 4627 class class class wbr 5147 dom cdm 5675 Fun wfun 6534 ‘cfv 6540 2c2 12263 ♯chash 14286 Vtxcvtx 28245 iEdgciedg 28246 Edgcedg 28296 UHGraphcuhgr 28305 UMGraphcumgr 28330 SubGraph csubgr 28513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 df-edg 28297 df-uhgr 28307 df-upgr 28331 df-umgr 28332 df-subgr 28514 |
This theorem is referenced by: subumgr 28534 subusgr 28535 |
Copyright terms: Public domain | W3C validator |