Proof of Theorem subumgredg2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveqeq2 6915 | . . 3
⊢ (𝑒 = (𝐼‘𝑋) → ((♯‘𝑒) = 2 ↔ (♯‘(𝐼‘𝑋)) = 2)) | 
| 2 |  | subumgredg2.v | . . . 4
⊢ 𝑉 = (Vtx‘𝑆) | 
| 3 |  | subumgredg2.i | . . . 4
⊢ 𝐼 = (iEdg‘𝑆) | 
| 4 |  | umgruhgr 29121 | . . . . 5
⊢ (𝐺 ∈ UMGraph → 𝐺 ∈
UHGraph) | 
| 5 | 4 | 3ad2ant2 1135 | . . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UHGraph) | 
| 6 |  | simp1 1137 | . . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑆 SubGraph 𝐺) | 
| 7 |  | simp3 1139 | . . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼) | 
| 8 | 2, 3, 5, 6, 7 | subgruhgredgd 29301 | . . 3
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ (𝒫 𝑉 ∖ {∅})) | 
| 9 |  | eqid 2737 | . . . . . . . . 9
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) | 
| 10 | 9 | uhgrfun 29083 | . . . . . . . 8
⊢ (𝐺 ∈ UHGraph → Fun
(iEdg‘𝐺)) | 
| 11 | 4, 10 | syl 17 | . . . . . . 7
⊢ (𝐺 ∈ UMGraph → Fun
(iEdg‘𝐺)) | 
| 12 | 11 | 3ad2ant2 1135 | . . . . . 6
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → Fun (iEdg‘𝐺)) | 
| 13 |  | eqid 2737 | . . . . . . . . 9
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) | 
| 14 |  | eqid 2737 | . . . . . . . . 9
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) | 
| 15 |  | eqid 2737 | . . . . . . . . 9
⊢
(Edg‘𝑆) =
(Edg‘𝑆) | 
| 16 | 13, 14, 3, 9, 15 | subgrprop2 29291 | . . . . . . . 8
⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) | 
| 17 | 16 | simp2d 1144 | . . . . . . 7
⊢ (𝑆 SubGraph 𝐺 → 𝐼 ⊆ (iEdg‘𝐺)) | 
| 18 | 17 | 3ad2ant1 1134 | . . . . . 6
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 ⊆ (iEdg‘𝐺)) | 
| 19 |  | funssfv 6927 | . . . . . . 7
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼‘𝑋)) | 
| 20 | 19 | eqcomd 2743 | . . . . . 6
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((iEdg‘𝐺)‘𝑋)) | 
| 21 | 12, 18, 7, 20 | syl3anc 1373 | . . . . 5
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((iEdg‘𝐺)‘𝑋)) | 
| 22 | 21 | fveq2d 6910 | . . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) = (♯‘((iEdg‘𝐺)‘𝑋))) | 
| 23 |  | simp2 1138 | . . . . 5
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UMGraph) | 
| 24 | 3 | dmeqi 5915 | . . . . . . . . 9
⊢ dom 𝐼 = dom (iEdg‘𝑆) | 
| 25 | 24 | eleq2i 2833 | . . . . . . . 8
⊢ (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom (iEdg‘𝑆)) | 
| 26 |  | subgreldmiedg 29300 | . . . . . . . . 9
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺)) | 
| 27 | 26 | ex 412 | . . . . . . . 8
⊢ (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺))) | 
| 28 | 25, 27 | biimtrid 242 | . . . . . . 7
⊢ (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom (iEdg‘𝐺))) | 
| 29 | 28 | a1d 25 | . . . . . 6
⊢ (𝑆 SubGraph 𝐺 → (𝐺 ∈ UMGraph → (𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom (iEdg‘𝐺)))) | 
| 30 | 29 | 3imp 1111 | . . . . 5
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom (iEdg‘𝐺)) | 
| 31 | 14, 9 | umgredg2 29117 | . . . . 5
⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom (iEdg‘𝐺)) →
(♯‘((iEdg‘𝐺)‘𝑋)) = 2) | 
| 32 | 23, 30, 31 | syl2anc 584 | . . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2) | 
| 33 | 22, 32 | eqtrd 2777 | . . 3
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) = 2) | 
| 34 | 1, 8, 33 | elrabd 3694 | . 2
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑒) =
2}) | 
| 35 |  | prprrab 14512 | . 2
⊢ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑒) = 2} =
{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | 
| 36 | 34, 35 | eleqtrdi 2851 | 1
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |