![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subumgredg2 | Structured version Visualization version GIF version |
Description: An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020.) |
Ref | Expression |
---|---|
subumgredg2.v | ⊢ 𝑉 = (Vtx‘𝑆) |
subumgredg2.i | ⊢ 𝐼 = (iEdg‘𝑆) |
Ref | Expression |
---|---|
subumgredg2 | ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6900 | . . 3 ⊢ (𝑒 = (𝐼‘𝑋) → ((♯‘𝑒) = 2 ↔ (♯‘(𝐼‘𝑋)) = 2)) | |
2 | subumgredg2.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝑆) | |
3 | subumgredg2.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝑆) | |
4 | umgruhgr 28632 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
5 | 4 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UHGraph) |
6 | simp1 1135 | . . . 4 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑆 SubGraph 𝐺) | |
7 | simp3 1137 | . . . 4 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼) | |
8 | 2, 3, 5, 6, 7 | subgruhgredgd 28809 | . . 3 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ (𝒫 𝑉 ∖ {∅})) |
9 | eqid 2731 | . . . . . . . . 9 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
10 | 9 | uhgrfun 28594 | . . . . . . . 8 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
11 | 4, 10 | syl 17 | . . . . . . 7 ⊢ (𝐺 ∈ UMGraph → Fun (iEdg‘𝐺)) |
12 | 11 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → Fun (iEdg‘𝐺)) |
13 | eqid 2731 | . . . . . . . . 9 ⊢ (Vtx‘𝑆) = (Vtx‘𝑆) | |
14 | eqid 2731 | . . . . . . . . 9 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
15 | eqid 2731 | . . . . . . . . 9 ⊢ (Edg‘𝑆) = (Edg‘𝑆) | |
16 | 13, 14, 3, 9, 15 | subgrprop2 28799 | . . . . . . . 8 ⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
17 | 16 | simp2d 1142 | . . . . . . 7 ⊢ (𝑆 SubGraph 𝐺 → 𝐼 ⊆ (iEdg‘𝐺)) |
18 | 17 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 ⊆ (iEdg‘𝐺)) |
19 | funssfv 6912 | . . . . . . 7 ⊢ ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼‘𝑋)) | |
20 | 19 | eqcomd 2737 | . . . . . 6 ⊢ ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((iEdg‘𝐺)‘𝑋)) |
21 | 12, 18, 7, 20 | syl3anc 1370 | . . . . 5 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((iEdg‘𝐺)‘𝑋)) |
22 | 21 | fveq2d 6895 | . . . 4 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) = (♯‘((iEdg‘𝐺)‘𝑋))) |
23 | simp2 1136 | . . . . 5 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UMGraph) | |
24 | 3 | dmeqi 5904 | . . . . . . . . 9 ⊢ dom 𝐼 = dom (iEdg‘𝑆) |
25 | 24 | eleq2i 2824 | . . . . . . . 8 ⊢ (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom (iEdg‘𝑆)) |
26 | subgreldmiedg 28808 | . . . . . . . . 9 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺)) | |
27 | 26 | ex 412 | . . . . . . . 8 ⊢ (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺))) |
28 | 25, 27 | biimtrid 241 | . . . . . . 7 ⊢ (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom (iEdg‘𝐺))) |
29 | 28 | a1d 25 | . . . . . 6 ⊢ (𝑆 SubGraph 𝐺 → (𝐺 ∈ UMGraph → (𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom (iEdg‘𝐺)))) |
30 | 29 | 3imp 1110 | . . . . 5 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom (iEdg‘𝐺)) |
31 | 14, 9 | umgredg2 28628 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2) |
32 | 23, 30, 31 | syl2anc 583 | . . . 4 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2) |
33 | 22, 32 | eqtrd 2771 | . . 3 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) = 2) |
34 | 1, 8, 33 | elrabd 3685 | . 2 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑒) = 2}) |
35 | prprrab 14439 | . 2 ⊢ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑒) = 2} = {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | |
36 | 34, 35 | eleqtrdi 2842 | 1 ⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {crab 3431 ∖ cdif 3945 ⊆ wss 3948 ∅c0 4322 𝒫 cpw 4602 {csn 4628 class class class wbr 5148 dom cdm 5676 Fun wfun 6537 ‘cfv 6543 2c2 12272 ♯chash 14295 Vtxcvtx 28524 iEdgciedg 28525 Edgcedg 28575 UHGraphcuhgr 28584 UMGraphcumgr 28609 SubGraph csubgr 28792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 df-edg 28576 df-uhgr 28586 df-upgr 28610 df-umgr 28611 df-subgr 28793 |
This theorem is referenced by: subumgr 28813 subusgr 28814 |
Copyright terms: Public domain | W3C validator |