MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subumgredg2 Structured version   Visualization version   GIF version

Theorem subumgredg2 27061
Description: An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020.)
Hypotheses
Ref Expression
subumgredg2.v 𝑉 = (Vtx‘𝑆)
subumgredg2.i 𝐼 = (iEdg‘𝑆)
Assertion
Ref Expression
subumgredg2 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
Distinct variable groups:   𝑒,𝐼   𝑒,𝑉   𝑒,𝑋
Allowed substitution hints:   𝑆(𝑒)   𝐺(𝑒)

Proof of Theorem subumgredg2
StepHypRef Expression
1 fveqeq2 6673 . . 3 (𝑒 = (𝐼𝑋) → ((♯‘𝑒) = 2 ↔ (♯‘(𝐼𝑋)) = 2))
2 subumgredg2.v . . . 4 𝑉 = (Vtx‘𝑆)
3 subumgredg2.i . . . 4 𝐼 = (iEdg‘𝑆)
4 umgruhgr 26883 . . . . 5 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
543ad2ant2 1130 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UHGraph)
6 simp1 1132 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑆 SubGraph 𝐺)
7 simp3 1134 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼)
82, 3, 5, 6, 7subgruhgredgd 27060 . . 3 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))
9 eqid 2821 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
109uhgrfun 26845 . . . . . . . 8 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
114, 10syl 17 . . . . . . 7 (𝐺 ∈ UMGraph → Fun (iEdg‘𝐺))
12113ad2ant2 1130 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → Fun (iEdg‘𝐺))
13 eqid 2821 . . . . . . . . 9 (Vtx‘𝑆) = (Vtx‘𝑆)
14 eqid 2821 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
15 eqid 2821 . . . . . . . . 9 (Edg‘𝑆) = (Edg‘𝑆)
1613, 14, 3, 9, 15subgrprop2 27050 . . . . . . . 8 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
1716simp2d 1139 . . . . . . 7 (𝑆 SubGraph 𝐺𝐼 ⊆ (iEdg‘𝐺))
18173ad2ant1 1129 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 ⊆ (iEdg‘𝐺))
19 funssfv 6685 . . . . . . 7 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼𝑋))
2019eqcomd 2827 . . . . . 6 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
2112, 18, 7, 20syl3anc 1367 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
2221fveq2d 6668 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) = (♯‘((iEdg‘𝐺)‘𝑋)))
23 simp2 1133 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UMGraph)
243dmeqi 5767 . . . . . . . . 9 dom 𝐼 = dom (iEdg‘𝑆)
2524eleq2i 2904 . . . . . . . 8 (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝑆))
26 subgreldmiedg 27059 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺))
2726ex 415 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺)))
2825, 27syl5bi 244 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝐺)))
2928a1d 25 . . . . . 6 (𝑆 SubGraph 𝐺 → (𝐺 ∈ UMGraph → (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝐺))))
30293imp 1107 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom (iEdg‘𝐺))
3114, 9umgredg2 26879 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2)
3223, 30, 31syl2anc 586 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2)
3322, 32eqtrd 2856 . . 3 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) = 2)
341, 8, 33elrabd 3681 . 2 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑒) = 2})
35 prprrab 13825 . 2 {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑒) = 2} = {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
3634, 35eleqtrdi 2923 1 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  {crab 3142  cdif 3932  wss 3935  c0 4290  𝒫 cpw 4538  {csn 4560   class class class wbr 5058  dom cdm 5549  Fun wfun 6343  cfv 6349  2c2 11686  chash 13684  Vtxcvtx 26775  iEdgciedg 26776  Edgcedg 26826  UHGraphcuhgr 26835  UMGraphcumgr 26860   SubGraph csubgr 27043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-hash 13685  df-edg 26827  df-uhgr 26837  df-upgr 26861  df-umgr 26862  df-subgr 27044
This theorem is referenced by:  subumgr  27064  subusgr  27065
  Copyright terms: Public domain W3C validator