MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subumgredg2 Structured version   Visualization version   GIF version

Theorem subumgredg2 28809
Description: An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020.)
Hypotheses
Ref Expression
subumgredg2.v 𝑉 = (Vtx‘𝑆)
subumgredg2.i 𝐼 = (iEdg‘𝑆)
Assertion
Ref Expression
subumgredg2 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
Distinct variable groups:   𝑒,𝐼   𝑒,𝑉   𝑒,𝑋
Allowed substitution hints:   𝑆(𝑒)   𝐺(𝑒)

Proof of Theorem subumgredg2
StepHypRef Expression
1 fveqeq2 6899 . . 3 (𝑒 = (𝐼𝑋) → ((♯‘𝑒) = 2 ↔ (♯‘(𝐼𝑋)) = 2))
2 subumgredg2.v . . . 4 𝑉 = (Vtx‘𝑆)
3 subumgredg2.i . . . 4 𝐼 = (iEdg‘𝑆)
4 umgruhgr 28631 . . . . 5 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
543ad2ant2 1132 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UHGraph)
6 simp1 1134 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑆 SubGraph 𝐺)
7 simp3 1136 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼)
82, 3, 5, 6, 7subgruhgredgd 28808 . . 3 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ (𝒫 𝑉 ∖ {∅}))
9 eqid 2730 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
109uhgrfun 28593 . . . . . . . 8 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
114, 10syl 17 . . . . . . 7 (𝐺 ∈ UMGraph → Fun (iEdg‘𝐺))
12113ad2ant2 1132 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → Fun (iEdg‘𝐺))
13 eqid 2730 . . . . . . . . 9 (Vtx‘𝑆) = (Vtx‘𝑆)
14 eqid 2730 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
15 eqid 2730 . . . . . . . . 9 (Edg‘𝑆) = (Edg‘𝑆)
1613, 14, 3, 9, 15subgrprop2 28798 . . . . . . . 8 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
1716simp2d 1141 . . . . . . 7 (𝑆 SubGraph 𝐺𝐼 ⊆ (iEdg‘𝐺))
18173ad2ant1 1131 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 ⊆ (iEdg‘𝐺))
19 funssfv 6911 . . . . . . 7 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼𝑋))
2019eqcomd 2736 . . . . . 6 ((Fun (iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
2112, 18, 7, 20syl3anc 1369 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((iEdg‘𝐺)‘𝑋))
2221fveq2d 6894 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) = (♯‘((iEdg‘𝐺)‘𝑋)))
23 simp2 1135 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UMGraph)
243dmeqi 5903 . . . . . . . . 9 dom 𝐼 = dom (iEdg‘𝑆)
2524eleq2i 2823 . . . . . . . 8 (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝑆))
26 subgreldmiedg 28807 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺))
2726ex 411 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺)))
2825, 27biimtrid 241 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝐺)))
2928a1d 25 . . . . . 6 (𝑆 SubGraph 𝐺 → (𝐺 ∈ UMGraph → (𝑋 ∈ dom 𝐼𝑋 ∈ dom (iEdg‘𝐺))))
30293imp 1109 . . . . 5 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom (iEdg‘𝐺))
3114, 9umgredg2 28627 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2)
3223, 30, 31syl2anc 582 . . . 4 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2)
3322, 32eqtrd 2770 . . 3 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼𝑋)) = 2)
341, 8, 33elrabd 3684 . 2 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑒) = 2})
35 prprrab 14438 . 2 {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑒) = 2} = {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
3634, 35eleqtrdi 2841 1 ((𝑆 SubGraph 𝐺𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2104  {crab 3430  cdif 3944  wss 3947  c0 4321  𝒫 cpw 4601  {csn 4627   class class class wbr 5147  dom cdm 5675  Fun wfun 6536  cfv 6542  2c2 12271  chash 14294  Vtxcvtx 28523  iEdgciedg 28524  Edgcedg 28574  UHGraphcuhgr 28583  UMGraphcumgr 28608   SubGraph csubgr 28791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-hash 14295  df-edg 28575  df-uhgr 28585  df-upgr 28609  df-umgr 28610  df-subgr 28792
This theorem is referenced by:  subumgr  28812  subusgr  28813
  Copyright terms: Public domain W3C validator