Proof of Theorem subumgredg2
| Step | Hyp | Ref
| Expression |
| 1 | | fveqeq2 6890 |
. . 3
⊢ (𝑒 = (𝐼‘𝑋) → ((♯‘𝑒) = 2 ↔ (♯‘(𝐼‘𝑋)) = 2)) |
| 2 | | subumgredg2.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝑆) |
| 3 | | subumgredg2.i |
. . . 4
⊢ 𝐼 = (iEdg‘𝑆) |
| 4 | | umgruhgr 29088 |
. . . . 5
⊢ (𝐺 ∈ UMGraph → 𝐺 ∈
UHGraph) |
| 5 | 4 | 3ad2ant2 1134 |
. . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UHGraph) |
| 6 | | simp1 1136 |
. . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑆 SubGraph 𝐺) |
| 7 | | simp3 1138 |
. . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼) |
| 8 | 2, 3, 5, 6, 7 | subgruhgredgd 29268 |
. . 3
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ (𝒫 𝑉 ∖ {∅})) |
| 9 | | eqid 2736 |
. . . . . . . . 9
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 10 | 9 | uhgrfun 29050 |
. . . . . . . 8
⊢ (𝐺 ∈ UHGraph → Fun
(iEdg‘𝐺)) |
| 11 | 4, 10 | syl 17 |
. . . . . . 7
⊢ (𝐺 ∈ UMGraph → Fun
(iEdg‘𝐺)) |
| 12 | 11 | 3ad2ant2 1134 |
. . . . . 6
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → Fun (iEdg‘𝐺)) |
| 13 | | eqid 2736 |
. . . . . . . . 9
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
| 14 | | eqid 2736 |
. . . . . . . . 9
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 15 | | eqid 2736 |
. . . . . . . . 9
⊢
(Edg‘𝑆) =
(Edg‘𝑆) |
| 16 | 13, 14, 3, 9, 15 | subgrprop2 29258 |
. . . . . . . 8
⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
| 17 | 16 | simp2d 1143 |
. . . . . . 7
⊢ (𝑆 SubGraph 𝐺 → 𝐼 ⊆ (iEdg‘𝐺)) |
| 18 | 17 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 ⊆ (iEdg‘𝐺)) |
| 19 | | funssfv 6902 |
. . . . . . 7
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → ((iEdg‘𝐺)‘𝑋) = (𝐼‘𝑋)) |
| 20 | 19 | eqcomd 2742 |
. . . . . 6
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝐼 ⊆ (iEdg‘𝐺) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((iEdg‘𝐺)‘𝑋)) |
| 21 | 12, 18, 7, 20 | syl3anc 1373 |
. . . . 5
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) = ((iEdg‘𝐺)‘𝑋)) |
| 22 | 21 | fveq2d 6885 |
. . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) = (♯‘((iEdg‘𝐺)‘𝑋))) |
| 23 | | simp2 1137 |
. . . . 5
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UMGraph) |
| 24 | 3 | dmeqi 5889 |
. . . . . . . . 9
⊢ dom 𝐼 = dom (iEdg‘𝑆) |
| 25 | 24 | eleq2i 2827 |
. . . . . . . 8
⊢ (𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom (iEdg‘𝑆)) |
| 26 | | subgreldmiedg 29267 |
. . . . . . . . 9
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom (iEdg‘𝑆)) → 𝑋 ∈ dom (iEdg‘𝐺)) |
| 27 | 26 | ex 412 |
. . . . . . . 8
⊢ (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom (iEdg‘𝑆) → 𝑋 ∈ dom (iEdg‘𝐺))) |
| 28 | 25, 27 | biimtrid 242 |
. . . . . . 7
⊢ (𝑆 SubGraph 𝐺 → (𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom (iEdg‘𝐺))) |
| 29 | 28 | a1d 25 |
. . . . . 6
⊢ (𝑆 SubGraph 𝐺 → (𝐺 ∈ UMGraph → (𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom (iEdg‘𝐺)))) |
| 30 | 29 | 3imp 1110 |
. . . . 5
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom (iEdg‘𝐺)) |
| 31 | 14, 9 | umgredg2 29084 |
. . . . 5
⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom (iEdg‘𝐺)) →
(♯‘((iEdg‘𝐺)‘𝑋)) = 2) |
| 32 | 23, 30, 31 | syl2anc 584 |
. . . 4
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘((iEdg‘𝐺)‘𝑋)) = 2) |
| 33 | 22, 32 | eqtrd 2771 |
. . 3
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (♯‘(𝐼‘𝑋)) = 2) |
| 34 | 1, 8, 33 | elrabd 3678 |
. 2
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑒) =
2}) |
| 35 | | prprrab 14496 |
. 2
⊢ {𝑒 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑒) = 2} =
{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} |
| 36 | 34, 35 | eleqtrdi 2845 |
1
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |