Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgruhgrfun | Structured version Visualization version GIF version |
Description: The edge function of a subgraph of a hypergraph is a function. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
subgruhgrfun | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
2 | 1 | uhgrfun 27725 | . 2 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
3 | subgrfun 27937 | . 2 ⊢ ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) | |
4 | 2, 3 | sylan 581 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2106 class class class wbr 5097 Fun wfun 6478 ‘cfv 6484 iEdgciedg 27656 UHGraphcuhgr 27715 SubGraph csubgr 27923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-fv 6492 df-uhgr 27717 df-subgr 27924 |
This theorem is referenced by: subgruhgredgd 27940 subuhgr 27942 subupgr 27943 subumgr 27944 subusgr 27945 |
Copyright terms: Public domain | W3C validator |