MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgruhgrfun Structured version   Visualization version   GIF version

Theorem subgruhgrfun 29266
Description: The edge function of a subgraph of a hypergraph is a function. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 20-Nov-2020.)
Assertion
Ref Expression
subgruhgrfun ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))

Proof of Theorem subgruhgrfun
StepHypRef Expression
1 eqid 2736 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
21uhgrfun 29050 . 2 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
3 subgrfun 29265 . 2 ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
42, 3sylan 580 1 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5124  Fun wfun 6530  cfv 6536  iEdgciedg 28981  UHGraphcuhgr 29040   SubGraph csubgr 29251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-uhgr 29042  df-subgr 29252
This theorem is referenced by:  subgruhgredgd  29268  subuhgr  29270  subupgr  29271  subumgr  29272  subusgr  29273
  Copyright terms: Public domain W3C validator