MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgruhgrfun Structured version   Visualization version   GIF version

Theorem subgruhgrfun 29227
Description: The edge function of a subgraph of a hypergraph is a function. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 20-Nov-2020.)
Assertion
Ref Expression
subgruhgrfun ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))

Proof of Theorem subgruhgrfun
StepHypRef Expression
1 eqid 2729 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
21uhgrfun 29011 . 2 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
3 subgrfun 29226 . 2 ((Fun (iEdg‘𝐺) ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
42, 3sylan 580 1 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5092  Fun wfun 6476  cfv 6482  iEdgciedg 28942  UHGraphcuhgr 29001   SubGraph csubgr 29212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-uhgr 29003  df-subgr 29213
This theorem is referenced by:  subgruhgredgd  29229  subuhgr  29231  subupgr  29232  subumgr  29233  subusgr  29234
  Copyright terms: Public domain W3C validator