![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issubgr2 | Structured version Visualization version GIF version |
Description: The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
issubgr.v | ⊢ 𝑉 = (Vtx‘𝑆) |
issubgr.a | ⊢ 𝐴 = (Vtx‘𝐺) |
issubgr.i | ⊢ 𝐼 = (iEdg‘𝑆) |
issubgr.b | ⊢ 𝐵 = (iEdg‘𝐺) |
issubgr.e | ⊢ 𝐸 = (Edg‘𝑆) |
Ref | Expression |
---|---|
issubgr2 | ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝑆) | |
2 | issubgr.a | . . . 4 ⊢ 𝐴 = (Vtx‘𝐺) | |
3 | issubgr.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝑆) | |
4 | issubgr.b | . . . 4 ⊢ 𝐵 = (iEdg‘𝐺) | |
5 | issubgr.e | . . . 4 ⊢ 𝐸 = (Edg‘𝑆) | |
6 | 1, 2, 3, 4, 5 | issubgr 28796 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
7 | 6 | 3adant2 1130 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
8 | resss 6006 | . . . . 5 ⊢ (𝐵 ↾ dom 𝐼) ⊆ 𝐵 | |
9 | sseq1 4007 | . . . . 5 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → (𝐼 ⊆ 𝐵 ↔ (𝐵 ↾ dom 𝐼) ⊆ 𝐵)) | |
10 | 8, 9 | mpbiri 258 | . . . 4 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → 𝐼 ⊆ 𝐵) |
11 | funssres 6592 | . . . . . . 7 ⊢ ((Fun 𝐵 ∧ 𝐼 ⊆ 𝐵) → (𝐵 ↾ dom 𝐼) = 𝐼) | |
12 | 11 | eqcomd 2737 | . . . . . 6 ⊢ ((Fun 𝐵 ∧ 𝐼 ⊆ 𝐵) → 𝐼 = (𝐵 ↾ dom 𝐼)) |
13 | 12 | ex 412 | . . . . 5 ⊢ (Fun 𝐵 → (𝐼 ⊆ 𝐵 → 𝐼 = (𝐵 ↾ dom 𝐼))) |
14 | 13 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝐼 ⊆ 𝐵 → 𝐼 = (𝐵 ↾ dom 𝐼))) |
15 | 10, 14 | impbid2 225 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝐼 = (𝐵 ↾ dom 𝐼) ↔ 𝐼 ⊆ 𝐵)) |
16 | 15 | 3anbi2d 1440 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → ((𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉))) |
17 | 7, 16 | bitrd 279 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 𝒫 cpw 4602 class class class wbr 5148 dom cdm 5676 ↾ cres 5678 Fun wfun 6537 ‘cfv 6543 Vtxcvtx 28524 iEdgciedg 28525 Edgcedg 28575 SubGraph csubgr 28792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-res 5688 df-iota 6495 df-fun 6545 df-fv 6551 df-subgr 28793 |
This theorem is referenced by: uhgrspansubgr 28816 |
Copyright terms: Public domain | W3C validator |