MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgr2 Structured version   Visualization version   GIF version

Theorem issubgr2 29304
Description: The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020.)
Hypotheses
Ref Expression
issubgr.v 𝑉 = (Vtx‘𝑆)
issubgr.a 𝐴 = (Vtx‘𝐺)
issubgr.i 𝐼 = (iEdg‘𝑆)
issubgr.b 𝐵 = (iEdg‘𝐺)
issubgr.e 𝐸 = (Edg‘𝑆)
Assertion
Ref Expression
issubgr2 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼𝐵𝐸 ⊆ 𝒫 𝑉)))

Proof of Theorem issubgr2
StepHypRef Expression
1 issubgr.v . . . 4 𝑉 = (Vtx‘𝑆)
2 issubgr.a . . . 4 𝐴 = (Vtx‘𝐺)
3 issubgr.i . . . 4 𝐼 = (iEdg‘𝑆)
4 issubgr.b . . . 4 𝐵 = (iEdg‘𝐺)
5 issubgr.e . . . 4 𝐸 = (Edg‘𝑆)
61, 2, 3, 4, 5issubgr 29303 . . 3 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
763adant2 1130 . 2 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
8 resss 6022 . . . . 5 (𝐵 ↾ dom 𝐼) ⊆ 𝐵
9 sseq1 4021 . . . . 5 (𝐼 = (𝐵 ↾ dom 𝐼) → (𝐼𝐵 ↔ (𝐵 ↾ dom 𝐼) ⊆ 𝐵))
108, 9mpbiri 258 . . . 4 (𝐼 = (𝐵 ↾ dom 𝐼) → 𝐼𝐵)
11 funssres 6612 . . . . . . 7 ((Fun 𝐵𝐼𝐵) → (𝐵 ↾ dom 𝐼) = 𝐼)
1211eqcomd 2741 . . . . . 6 ((Fun 𝐵𝐼𝐵) → 𝐼 = (𝐵 ↾ dom 𝐼))
1312ex 412 . . . . 5 (Fun 𝐵 → (𝐼𝐵𝐼 = (𝐵 ↾ dom 𝐼)))
14133ad2ant2 1133 . . . 4 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝐼𝐵𝐼 = (𝐵 ↾ dom 𝐼)))
1510, 14impbid2 226 . . 3 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝐼 = (𝐵 ↾ dom 𝐼) ↔ 𝐼𝐵))
16153anbi2d 1440 . 2 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → ((𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) ↔ (𝑉𝐴𝐼𝐵𝐸 ⊆ 𝒫 𝑉)))
177, 16bitrd 279 1 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼𝐵𝐸 ⊆ 𝒫 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963  𝒫 cpw 4605   class class class wbr 5148  dom cdm 5689  cres 5691  Fun wfun 6557  cfv 6563  Vtxcvtx 29028  iEdgciedg 29029  Edgcedg 29079   SubGraph csubgr 29299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-subgr 29300
This theorem is referenced by:  uhgrspansubgr  29323
  Copyright terms: Public domain W3C validator