![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issubgr2 | Structured version Visualization version GIF version |
Description: The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020.) |
Ref | Expression |
---|---|
issubgr.v | ⊢ 𝑉 = (Vtx‘𝑆) |
issubgr.a | ⊢ 𝐴 = (Vtx‘𝐺) |
issubgr.i | ⊢ 𝐼 = (iEdg‘𝑆) |
issubgr.b | ⊢ 𝐵 = (iEdg‘𝐺) |
issubgr.e | ⊢ 𝐸 = (Edg‘𝑆) |
Ref | Expression |
---|---|
issubgr2 | ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝑆) | |
2 | issubgr.a | . . . 4 ⊢ 𝐴 = (Vtx‘𝐺) | |
3 | issubgr.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝑆) | |
4 | issubgr.b | . . . 4 ⊢ 𝐵 = (iEdg‘𝐺) | |
5 | issubgr.e | . . . 4 ⊢ 𝐸 = (Edg‘𝑆) | |
6 | 1, 2, 3, 4, 5 | issubgr 29306 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
7 | 6 | 3adant2 1131 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
8 | resss 6031 | . . . . 5 ⊢ (𝐵 ↾ dom 𝐼) ⊆ 𝐵 | |
9 | sseq1 4034 | . . . . 5 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → (𝐼 ⊆ 𝐵 ↔ (𝐵 ↾ dom 𝐼) ⊆ 𝐵)) | |
10 | 8, 9 | mpbiri 258 | . . . 4 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → 𝐼 ⊆ 𝐵) |
11 | funssres 6622 | . . . . . . 7 ⊢ ((Fun 𝐵 ∧ 𝐼 ⊆ 𝐵) → (𝐵 ↾ dom 𝐼) = 𝐼) | |
12 | 11 | eqcomd 2746 | . . . . . 6 ⊢ ((Fun 𝐵 ∧ 𝐼 ⊆ 𝐵) → 𝐼 = (𝐵 ↾ dom 𝐼)) |
13 | 12 | ex 412 | . . . . 5 ⊢ (Fun 𝐵 → (𝐼 ⊆ 𝐵 → 𝐼 = (𝐵 ↾ dom 𝐼))) |
14 | 13 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝐼 ⊆ 𝐵 → 𝐼 = (𝐵 ↾ dom 𝐼))) |
15 | 10, 14 | impbid2 226 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝐼 = (𝐵 ↾ dom 𝐼) ↔ 𝐼 ⊆ 𝐵)) |
16 | 15 | 3anbi2d 1441 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → ((𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉))) |
17 | 7, 16 | bitrd 279 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 dom cdm 5700 ↾ cres 5702 Fun wfun 6567 ‘cfv 6573 Vtxcvtx 29031 iEdgciedg 29032 Edgcedg 29082 SubGraph csubgr 29302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-subgr 29303 |
This theorem is referenced by: uhgrspansubgr 29326 |
Copyright terms: Public domain | W3C validator |