MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgr2 Structured version   Visualization version   GIF version

Theorem issubgr2 29217
Description: The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020.)
Hypotheses
Ref Expression
issubgr.v 𝑉 = (Vtx‘𝑆)
issubgr.a 𝐴 = (Vtx‘𝐺)
issubgr.i 𝐼 = (iEdg‘𝑆)
issubgr.b 𝐵 = (iEdg‘𝐺)
issubgr.e 𝐸 = (Edg‘𝑆)
Assertion
Ref Expression
issubgr2 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼𝐵𝐸 ⊆ 𝒫 𝑉)))

Proof of Theorem issubgr2
StepHypRef Expression
1 issubgr.v . . . 4 𝑉 = (Vtx‘𝑆)
2 issubgr.a . . . 4 𝐴 = (Vtx‘𝐺)
3 issubgr.i . . . 4 𝐼 = (iEdg‘𝑆)
4 issubgr.b . . . 4 𝐵 = (iEdg‘𝐺)
5 issubgr.e . . . 4 𝐸 = (Edg‘𝑆)
61, 2, 3, 4, 5issubgr 29216 . . 3 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
763adant2 1131 . 2 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)))
8 resss 5952 . . . . 5 (𝐵 ↾ dom 𝐼) ⊆ 𝐵
9 sseq1 3961 . . . . 5 (𝐼 = (𝐵 ↾ dom 𝐼) → (𝐼𝐵 ↔ (𝐵 ↾ dom 𝐼) ⊆ 𝐵))
108, 9mpbiri 258 . . . 4 (𝐼 = (𝐵 ↾ dom 𝐼) → 𝐼𝐵)
11 funssres 6526 . . . . . . 7 ((Fun 𝐵𝐼𝐵) → (𝐵 ↾ dom 𝐼) = 𝐼)
1211eqcomd 2735 . . . . . 6 ((Fun 𝐵𝐼𝐵) → 𝐼 = (𝐵 ↾ dom 𝐼))
1312ex 412 . . . . 5 (Fun 𝐵 → (𝐼𝐵𝐼 = (𝐵 ↾ dom 𝐼)))
14133ad2ant2 1134 . . . 4 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝐼𝐵𝐼 = (𝐵 ↾ dom 𝐼)))
1510, 14impbid2 226 . . 3 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝐼 = (𝐵 ↾ dom 𝐼) ↔ 𝐼𝐵))
16153anbi2d 1443 . 2 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → ((𝑉𝐴𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) ↔ (𝑉𝐴𝐼𝐵𝐸 ⊆ 𝒫 𝑉)))
177, 16bitrd 279 1 ((𝐺𝑊 ∧ Fun 𝐵𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉𝐴𝐼𝐵𝐸 ⊆ 𝒫 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  𝒫 cpw 4551   class class class wbr 5092  dom cdm 5619  cres 5621  Fun wfun 6476  cfv 6482  Vtxcvtx 28941  iEdgciedg 28942  Edgcedg 28992   SubGraph csubgr 29212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-subgr 29213
This theorem is referenced by:  uhgrspansubgr  29236
  Copyright terms: Public domain W3C validator