| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issubgr2 | Structured version Visualization version GIF version | ||
| Description: The property of a set to be a subgraph of a set whose edge function is actually a function. (Contributed by AV, 20-Nov-2020.) |
| Ref | Expression |
|---|---|
| issubgr.v | ⊢ 𝑉 = (Vtx‘𝑆) |
| issubgr.a | ⊢ 𝐴 = (Vtx‘𝐺) |
| issubgr.i | ⊢ 𝐼 = (iEdg‘𝑆) |
| issubgr.b | ⊢ 𝐵 = (iEdg‘𝐺) |
| issubgr.e | ⊢ 𝐸 = (Edg‘𝑆) |
| Ref | Expression |
|---|---|
| issubgr2 | ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝑆) | |
| 2 | issubgr.a | . . . 4 ⊢ 𝐴 = (Vtx‘𝐺) | |
| 3 | issubgr.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝑆) | |
| 4 | issubgr.b | . . . 4 ⊢ 𝐵 = (iEdg‘𝐺) | |
| 5 | issubgr.e | . . . 4 ⊢ 𝐸 = (Edg‘𝑆) | |
| 6 | 1, 2, 3, 4, 5 | issubgr 29249 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
| 7 | 6 | 3adant2 1131 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉))) |
| 8 | resss 5949 | . . . . 5 ⊢ (𝐵 ↾ dom 𝐼) ⊆ 𝐵 | |
| 9 | sseq1 3955 | . . . . 5 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → (𝐼 ⊆ 𝐵 ↔ (𝐵 ↾ dom 𝐼) ⊆ 𝐵)) | |
| 10 | 8, 9 | mpbiri 258 | . . . 4 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → 𝐼 ⊆ 𝐵) |
| 11 | funssres 6525 | . . . . . . 7 ⊢ ((Fun 𝐵 ∧ 𝐼 ⊆ 𝐵) → (𝐵 ↾ dom 𝐼) = 𝐼) | |
| 12 | 11 | eqcomd 2737 | . . . . . 6 ⊢ ((Fun 𝐵 ∧ 𝐼 ⊆ 𝐵) → 𝐼 = (𝐵 ↾ dom 𝐼)) |
| 13 | 12 | ex 412 | . . . . 5 ⊢ (Fun 𝐵 → (𝐼 ⊆ 𝐵 → 𝐼 = (𝐵 ↾ dom 𝐼))) |
| 14 | 13 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝐼 ⊆ 𝐵 → 𝐼 = (𝐵 ↾ dom 𝐼))) |
| 15 | 10, 14 | impbid2 226 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝐼 = (𝐵 ↾ dom 𝐼) ↔ 𝐼 ⊆ 𝐵)) |
| 16 | 15 | 3anbi2d 1443 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → ((𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉))) |
| 17 | 7, 16 | bitrd 279 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ 𝑈) → (𝑆 SubGraph 𝐺 ↔ (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4547 class class class wbr 5089 dom cdm 5614 ↾ cres 5616 Fun wfun 6475 ‘cfv 6481 Vtxcvtx 28974 iEdgciedg 28975 Edgcedg 29025 SubGraph csubgr 29245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-subgr 29246 |
| This theorem is referenced by: uhgrspansubgr 29269 |
| Copyright terms: Public domain | W3C validator |