Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termchommo Structured version   Visualization version   GIF version

Theorem termchommo 49646
Description: All morphisms of a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
termcid.h 𝐻 = (Hom ‘𝐶)
termcid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
termchommo.x (𝜑𝑍𝐵)
termchommo.y (𝜑𝑊𝐵)
termchommo.f (𝜑𝐺 ∈ (𝑍𝐻𝑊))
Assertion
Ref Expression
termchommo (𝜑𝐹 = 𝐺)

Proof of Theorem termchommo
StepHypRef Expression
1 termcbasmo.x . 2 (𝜑𝑋𝐵)
2 termcbasmo.y . 2 (𝜑𝑌𝐵)
3 termcid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 termchommo.f . . 3 (𝜑𝐺 ∈ (𝑍𝐻𝑊))
5 termcbas.c . . . . 5 (𝜑𝐶 ∈ TermCat)
6 termcbas.b . . . . 5 𝐵 = (Base‘𝐶)
7 termchommo.x . . . . 5 (𝜑𝑍𝐵)
85, 6, 1, 7termcbasmo 49644 . . . 4 (𝜑𝑋 = 𝑍)
9 termchommo.y . . . . 5 (𝜑𝑊𝐵)
105, 6, 2, 9termcbasmo 49644 . . . 4 (𝜑𝑌 = 𝑊)
118, 10oveq12d 7373 . . 3 (𝜑 → (𝑋𝐻𝑌) = (𝑍𝐻𝑊))
124, 11eleqtrrd 2836 . 2 (𝜑𝐺 ∈ (𝑋𝐻𝑌))
13 termcid.h . 2 𝐻 = (Hom ‘𝐶)
145termcthind 49639 . 2 (𝜑𝐶 ∈ ThinCat)
151, 2, 3, 12, 6, 13, 14thincmo2 49587 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179  TermCatctermc 49633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-thinc 49579  df-termc 49634
This theorem is referenced by:  termcarweu  49689
  Copyright terms: Public domain W3C validator