Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termchommo Structured version   Visualization version   GIF version

Theorem termchommo 49103
Description: All morphisms of a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
termcid.h 𝐻 = (Hom ‘𝐶)
termcid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
termchommo.x (𝜑𝑍𝐵)
termchommo.y (𝜑𝑊𝐵)
termchommo.f (𝜑𝐺 ∈ (𝑍𝐻𝑊))
Assertion
Ref Expression
termchommo (𝜑𝐹 = 𝐺)

Proof of Theorem termchommo
StepHypRef Expression
1 termcbasmo.x . 2 (𝜑𝑋𝐵)
2 termcbasmo.y . 2 (𝜑𝑌𝐵)
3 termcid.f . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 termchommo.f . . 3 (𝜑𝐺 ∈ (𝑍𝐻𝑊))
5 termcbas.c . . . . 5 (𝜑𝐶 ∈ TermCat)
6 termcbas.b . . . . 5 𝐵 = (Base‘𝐶)
7 termchommo.x . . . . 5 (𝜑𝑍𝐵)
85, 6, 1, 7termcbasmo 49101 . . . 4 (𝜑𝑋 = 𝑍)
9 termchommo.y . . . . 5 (𝜑𝑊𝐵)
105, 6, 2, 9termcbasmo 49101 . . . 4 (𝜑𝑌 = 𝑊)
118, 10oveq12d 7447 . . 3 (𝜑 → (𝑋𝐻𝑌) = (𝑍𝐻𝑊))
124, 11eleqtrrd 2843 . 2 (𝜑𝐺 ∈ (𝑋𝐻𝑌))
13 termcid.h . 2 𝐻 = (Hom ‘𝐶)
145termcthind 49098 . 2 (𝜑𝐶 ∈ ThinCat)
151, 2, 3, 12, 6, 13, 14thincmo2 49049 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6559  (class class class)co 7429  Basecbs 17243  Hom chom 17304  TermCatctermc 49092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-nul 5304
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-iota 6512  df-fv 6567  df-ov 7432  df-thinc 49041  df-termc 49093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator