Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termchomn0 Structured version   Visualization version   GIF version

Theorem termchomn0 49489
Description: All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
termcid.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
termchomn0 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)

Proof of Theorem termchomn0
StepHypRef Expression
1 termcbas.b . . . 4 𝐵 = (Base‘𝐶)
2 termcid.h . . . 4 𝐻 = (Hom ‘𝐶)
3 eqid 2729 . . . 4 (Id‘𝐶) = (Id‘𝐶)
4 termcbas.c . . . . 5 (𝜑𝐶 ∈ TermCat)
54termccd 49484 . . . 4 (𝜑𝐶 ∈ Cat)
6 termcbasmo.x . . . 4 (𝜑𝑋𝐵)
71, 2, 3, 5, 6catidcl 17607 . . 3 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
8 termcbasmo.y . . . . 5 (𝜑𝑌𝐵)
94, 1, 6, 8termcbasmo 49488 . . . 4 (𝜑𝑋 = 𝑌)
109oveq2d 7369 . . 3 (𝜑 → (𝑋𝐻𝑋) = (𝑋𝐻𝑌))
117, 10eleqtrd 2830 . 2 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌))
12 n0i 4293 . 2 (((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅)
1311, 12syl 17 1 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  c0 4286  cfv 6486  (class class class)co 7353  Basecbs 17139  Hom chom 17191  Idccid 17590  TermCatctermc 49477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-cat 17593  df-cid 17594  df-thinc 49423  df-termc 49478
This theorem is referenced by:  termchom  49493  functermc  49513  fulltermc  49516
  Copyright terms: Public domain W3C validator