Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termchomn0 Structured version   Visualization version   GIF version

Theorem termchomn0 49516
Description: All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
termcid.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
termchomn0 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)

Proof of Theorem termchomn0
StepHypRef Expression
1 termcbas.b . . . 4 𝐵 = (Base‘𝐶)
2 termcid.h . . . 4 𝐻 = (Hom ‘𝐶)
3 eqid 2731 . . . 4 (Id‘𝐶) = (Id‘𝐶)
4 termcbas.c . . . . 5 (𝜑𝐶 ∈ TermCat)
54termccd 49511 . . . 4 (𝜑𝐶 ∈ Cat)
6 termcbasmo.x . . . 4 (𝜑𝑋𝐵)
71, 2, 3, 5, 6catidcl 17583 . . 3 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
8 termcbasmo.y . . . . 5 (𝜑𝑌𝐵)
94, 1, 6, 8termcbasmo 49515 . . . 4 (𝜑𝑋 = 𝑌)
109oveq2d 7357 . . 3 (𝜑 → (𝑋𝐻𝑋) = (𝑋𝐻𝑌))
117, 10eleqtrd 2833 . 2 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌))
12 n0i 4285 . 2 (((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅)
1311, 12syl 17 1 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  c0 4278  cfv 6476  (class class class)co 7341  Basecbs 17115  Hom chom 17167  Idccid 17566  TermCatctermc 49504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-cat 17569  df-cid 17570  df-thinc 49450  df-termc 49505
This theorem is referenced by:  termchom  49520  functermc  49540  fulltermc  49543
  Copyright terms: Public domain W3C validator