| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termchomn0 | Structured version Visualization version GIF version | ||
| Description: All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcbas.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| termcbasmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termcbasmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| termcid.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| termchomn0 | ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | termcid.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | eqid 2734 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 4 | termcbas.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 5 | 4 | termccd 49178 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 6 | termcbasmo.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | 1, 2, 3, 5, 6 | catidcl 17697 | . . 3 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋)) |
| 8 | termcbasmo.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 4, 1, 6, 8 | termcbasmo 49181 | . . . 4 ⊢ (𝜑 → 𝑋 = 𝑌) |
| 10 | 9 | oveq2d 7429 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑋𝐻𝑌)) |
| 11 | 7, 10 | eleqtrd 2835 | . 2 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌)) |
| 12 | n0i 4320 | . 2 ⊢ (((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅) | |
| 13 | 11, 12 | syl 17 | 1 ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 ∅c0 4313 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 Hom chom 17285 Idccid 17680 TermCatctermc 49171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-cat 17683 df-cid 17684 df-thinc 49119 df-termc 49172 |
| This theorem is referenced by: termchom 49186 functermc 49206 fulltermc 49209 |
| Copyright terms: Public domain | W3C validator |