Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termchomn0 Structured version   Visualization version   GIF version

Theorem termchomn0 49453
Description: All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
termcid.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
termchomn0 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)

Proof of Theorem termchomn0
StepHypRef Expression
1 termcbas.b . . . 4 𝐵 = (Base‘𝐶)
2 termcid.h . . . 4 𝐻 = (Hom ‘𝐶)
3 eqid 2730 . . . 4 (Id‘𝐶) = (Id‘𝐶)
4 termcbas.c . . . . 5 (𝜑𝐶 ∈ TermCat)
54termccd 49448 . . . 4 (𝜑𝐶 ∈ Cat)
6 termcbasmo.x . . . 4 (𝜑𝑋𝐵)
71, 2, 3, 5, 6catidcl 17649 . . 3 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
8 termcbasmo.y . . . . 5 (𝜑𝑌𝐵)
94, 1, 6, 8termcbasmo 49452 . . . 4 (𝜑𝑋 = 𝑌)
109oveq2d 7405 . . 3 (𝜑 → (𝑋𝐻𝑋) = (𝑋𝐻𝑌))
117, 10eleqtrd 2831 . 2 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌))
12 n0i 4305 . 2 (((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅)
1311, 12syl 17 1 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  c0 4298  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  Idccid 17632  TermCatctermc 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-cat 17635  df-cid 17636  df-thinc 49387  df-termc 49442
This theorem is referenced by:  termchom  49457  functermc  49477  fulltermc  49480
  Copyright terms: Public domain W3C validator