Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termchomn0 Structured version   Visualization version   GIF version

Theorem termchomn0 49182
Description: All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
termcid.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
termchomn0 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)

Proof of Theorem termchomn0
StepHypRef Expression
1 termcbas.b . . . 4 𝐵 = (Base‘𝐶)
2 termcid.h . . . 4 𝐻 = (Hom ‘𝐶)
3 eqid 2734 . . . 4 (Id‘𝐶) = (Id‘𝐶)
4 termcbas.c . . . . 5 (𝜑𝐶 ∈ TermCat)
54termccd 49178 . . . 4 (𝜑𝐶 ∈ Cat)
6 termcbasmo.x . . . 4 (𝜑𝑋𝐵)
71, 2, 3, 5, 6catidcl 17697 . . 3 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
8 termcbasmo.y . . . . 5 (𝜑𝑌𝐵)
94, 1, 6, 8termcbasmo 49181 . . . 4 (𝜑𝑋 = 𝑌)
109oveq2d 7429 . . 3 (𝜑 → (𝑋𝐻𝑋) = (𝑋𝐻𝑌))
117, 10eleqtrd 2835 . 2 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌))
12 n0i 4320 . 2 (((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅)
1311, 12syl 17 1 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2107  c0 4313  cfv 6541  (class class class)co 7413  Basecbs 17230  Hom chom 17285  Idccid 17680  TermCatctermc 49171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-cat 17683  df-cid 17684  df-thinc 49119  df-termc 49172
This theorem is referenced by:  termchom  49186  functermc  49206  fulltermc  49209
  Copyright terms: Public domain W3C validator