Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termchomn0 Structured version   Visualization version   GIF version

Theorem termchomn0 49645
Description: All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
termcbasmo.y (𝜑𝑌𝐵)
termcid.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
termchomn0 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)

Proof of Theorem termchomn0
StepHypRef Expression
1 termcbas.b . . . 4 𝐵 = (Base‘𝐶)
2 termcid.h . . . 4 𝐻 = (Hom ‘𝐶)
3 eqid 2733 . . . 4 (Id‘𝐶) = (Id‘𝐶)
4 termcbas.c . . . . 5 (𝜑𝐶 ∈ TermCat)
54termccd 49640 . . . 4 (𝜑𝐶 ∈ Cat)
6 termcbasmo.x . . . 4 (𝜑𝑋𝐵)
71, 2, 3, 5, 6catidcl 17596 . . 3 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
8 termcbasmo.y . . . . 5 (𝜑𝑌𝐵)
94, 1, 6, 8termcbasmo 49644 . . . 4 (𝜑𝑋 = 𝑌)
109oveq2d 7371 . . 3 (𝜑 → (𝑋𝐻𝑋) = (𝑋𝐻𝑌))
117, 10eleqtrd 2835 . 2 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌))
12 n0i 4289 . 2 (((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅)
1311, 12syl 17 1 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  c0 4282  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179  Idccid 17579  TermCatctermc 49633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-cat 17582  df-cid 17583  df-thinc 49579  df-termc 49634
This theorem is referenced by:  termchom  49649  functermc  49669  fulltermc  49672
  Copyright terms: Public domain W3C validator