| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termchomn0 | Structured version Visualization version GIF version | ||
| Description: All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcbas.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| termcbasmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termcbasmo.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| termcid.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| termchomn0 | ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | termcid.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | eqid 2733 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 4 | termcbas.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 5 | 4 | termccd 49640 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 6 | termcbasmo.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | 1, 2, 3, 5, 6 | catidcl 17596 | . . 3 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋)) |
| 8 | termcbasmo.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 4, 1, 6, 8 | termcbasmo 49644 | . . . 4 ⊢ (𝜑 → 𝑋 = 𝑌) |
| 10 | 9 | oveq2d 7371 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑋) = (𝑋𝐻𝑌)) |
| 11 | 7, 10 | eleqtrd 2835 | . 2 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌)) |
| 12 | n0i 4289 | . 2 ⊢ (((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑌) → ¬ (𝑋𝐻𝑌) = ∅) | |
| 13 | 11, 12 | syl 17 | 1 ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ∅c0 4282 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 Hom chom 17179 Idccid 17579 TermCatctermc 49633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-cat 17582 df-cid 17583 df-thinc 49579 df-termc 49634 |
| This theorem is referenced by: termchom 49649 functermc 49669 fulltermc 49672 |
| Copyright terms: Public domain | W3C validator |