Step | Hyp | Ref
| Expression |
1 | | tgbtwnconn1.p |
. . . . 5
β’ π = (BaseβπΊ) |
2 | | tgbtwnconn1.m |
. . . . 5
β’ β =
(distβπΊ) |
3 | | tgbtwnconn1.i |
. . . . 5
β’ πΌ = (ItvβπΊ) |
4 | | tgbtwnconn1.g |
. . . . 5
β’ (π β πΊ β TarskiG) |
5 | | tgbtwnconn1.e |
. . . . 5
β’ (π β πΈ β π) |
6 | | tgbtwnconn1.f |
. . . . 5
β’ (π β πΉ β π) |
7 | 1, 2, 3, 4, 5, 6 | axtgcgrrflx 27713 |
. . . 4
β’ (π β (πΈ β πΉ) = (πΉ β πΈ)) |
8 | 7 | adantr 482 |
. . 3
β’ ((π β§ π΅ = πΆ) β (πΈ β πΉ) = (πΉ β πΈ)) |
9 | 4 | adantr 482 |
. . . . . . 7
β’ ((π β§ π΅ = πΆ) β πΊ β TarskiG) |
10 | 5 | adantr 482 |
. . . . . . 7
β’ ((π β§ π΅ = πΆ) β πΈ β π) |
11 | | tgbtwnconn1.h |
. . . . . . . 8
β’ (π β π» β π) |
12 | 11 | adantr 482 |
. . . . . . 7
β’ ((π β§ π΅ = πΆ) β π» β π) |
13 | | tgbtwnconn1.c |
. . . . . . . 8
β’ (π β πΆ β π) |
14 | 13 | adantr 482 |
. . . . . . 7
β’ ((π β§ π΅ = πΆ) β πΆ β π) |
15 | | tgbtwnconn1.10 |
. . . . . . . . 9
β’ (π β (πΈ β π») = (π΅ β πΆ)) |
16 | 15 | adantr 482 |
. . . . . . . 8
β’ ((π β§ π΅ = πΆ) β (πΈ β π») = (π΅ β πΆ)) |
17 | | simpr 486 |
. . . . . . . . 9
β’ ((π β§ π΅ = πΆ) β π΅ = πΆ) |
18 | 17 | oveq1d 7424 |
. . . . . . . 8
β’ ((π β§ π΅ = πΆ) β (π΅ β πΆ) = (πΆ β πΆ)) |
19 | 16, 18 | eqtrd 2773 |
. . . . . . 7
β’ ((π β§ π΅ = πΆ) β (πΈ β π») = (πΆ β πΆ)) |
20 | 1, 2, 3, 9, 10, 12, 14, 19 | axtgcgrid 27714 |
. . . . . 6
β’ ((π β§ π΅ = πΆ) β πΈ = π») |
21 | | tgbtwnconn1.a |
. . . . . . . 8
β’ (π β π΄ β π) |
22 | | tgbtwnconn1.b |
. . . . . . . 8
β’ (π β π΅ β π) |
23 | | tgbtwnconn1.d |
. . . . . . . 8
β’ (π β π· β π) |
24 | | tgbtwnconn1.1 |
. . . . . . . 8
β’ (π β π΄ β π΅) |
25 | | tgbtwnconn1.2 |
. . . . . . . 8
β’ (π β π΅ β (π΄πΌπΆ)) |
26 | | tgbtwnconn1.3 |
. . . . . . . 8
β’ (π β π΅ β (π΄πΌπ·)) |
27 | | tgbtwnconn1.j |
. . . . . . . 8
β’ (π β π½ β π) |
28 | | tgbtwnconn1.4 |
. . . . . . . 8
β’ (π β π· β (π΄πΌπΈ)) |
29 | | tgbtwnconn1.5 |
. . . . . . . 8
β’ (π β πΆ β (π΄πΌπΉ)) |
30 | | tgbtwnconn1.6 |
. . . . . . . 8
β’ (π β πΈ β (π΄πΌπ»)) |
31 | | tgbtwnconn1.7 |
. . . . . . . 8
β’ (π β πΉ β (π΄πΌπ½)) |
32 | | tgbtwnconn1.8 |
. . . . . . . 8
β’ (π β (πΈ β π·) = (πΆ β π·)) |
33 | | tgbtwnconn1.9 |
. . . . . . . 8
β’ (π β (πΆ β πΉ) = (πΆ β π·)) |
34 | | tgbtwnconn1.11 |
. . . . . . . 8
β’ (π β (πΉ β π½) = (π΅ β π·)) |
35 | 1, 3, 4, 21, 22, 13, 23, 24, 25, 26, 2, 5, 6, 11, 27, 28, 29, 30, 31, 32, 33, 15, 34 | tgbtwnconn1lem1 27823 |
. . . . . . 7
β’ (π β π» = π½) |
36 | 35 | adantr 482 |
. . . . . 6
β’ ((π β§ π΅ = πΆ) β π» = π½) |
37 | 20, 36 | eqtrd 2773 |
. . . . 5
β’ ((π β§ π΅ = πΆ) β πΈ = π½) |
38 | 37 | oveq2d 7425 |
. . . 4
β’ ((π β§ π΅ = πΆ) β (πΉ β πΈ) = (πΉ β π½)) |
39 | 34 | adantr 482 |
. . . 4
β’ ((π β§ π΅ = πΆ) β (πΉ β π½) = (π΅ β π·)) |
40 | 17 | oveq1d 7424 |
. . . 4
β’ ((π β§ π΅ = πΆ) β (π΅ β π·) = (πΆ β π·)) |
41 | 38, 39, 40 | 3eqtrd 2777 |
. . 3
β’ ((π β§ π΅ = πΆ) β (πΉ β πΈ) = (πΆ β π·)) |
42 | 8, 41 | eqtrd 2773 |
. 2
β’ ((π β§ π΅ = πΆ) β (πΈ β πΉ) = (πΆ β π·)) |
43 | 4 | adantr 482 |
. . 3
β’ ((π β§ π΅ β πΆ) β πΊ β TarskiG) |
44 | 6 | adantr 482 |
. . 3
β’ ((π β§ π΅ β πΆ) β πΉ β π) |
45 | 5 | adantr 482 |
. . 3
β’ ((π β§ π΅ β πΆ) β πΈ β π) |
46 | 23 | adantr 482 |
. . 3
β’ ((π β§ π΅ β πΆ) β π· β π) |
47 | 13 | adantr 482 |
. . 3
β’ ((π β§ π΅ β πΆ) β πΆ β π) |
48 | 22 | adantr 482 |
. . . 4
β’ ((π β§ π΅ β πΆ) β π΅ β π) |
49 | 27 | adantr 482 |
. . . 4
β’ ((π β§ π΅ β πΆ) β π½ β π) |
50 | | simpr 486 |
. . . 4
β’ ((π β§ π΅ β πΆ) β π΅ β πΆ) |
51 | 1, 2, 3, 4, 21, 22, 13, 6, 25, 29 | tgbtwnexch3 27745 |
. . . . 5
β’ (π β πΆ β (π΅πΌπΉ)) |
52 | 51 | adantr 482 |
. . . 4
β’ ((π β§ π΅ β πΆ) β πΆ β (π΅πΌπΉ)) |
53 | 35 | oveq2d 7425 |
. . . . . . . 8
β’ (π β (π΄πΌπ») = (π΄πΌπ½)) |
54 | 30, 53 | eleqtrd 2836 |
. . . . . . 7
β’ (π β πΈ β (π΄πΌπ½)) |
55 | 1, 2, 3, 4, 21, 23, 5, 27, 28, 54 | tgbtwnexch3 27745 |
. . . . . 6
β’ (π β πΈ β (π·πΌπ½)) |
56 | 1, 2, 3, 4, 23, 5,
27, 55 | tgbtwncom 27739 |
. . . . 5
β’ (π β πΈ β (π½πΌπ·)) |
57 | 56 | adantr 482 |
. . . 4
β’ ((π β§ π΅ β πΆ) β πΈ β (π½πΌπ·)) |
58 | 35 | adantr 482 |
. . . . . 6
β’ ((π β§ π΅ β πΆ) β π» = π½) |
59 | 58 | oveq2d 7425 |
. . . . 5
β’ ((π β§ π΅ β πΆ) β (πΈ β π») = (πΈ β π½)) |
60 | 15 | adantr 482 |
. . . . 5
β’ ((π β§ π΅ β πΆ) β (πΈ β π») = (π΅ β πΆ)) |
61 | 1, 2, 3, 43, 45, 49 | axtgcgrrflx 27713 |
. . . . 5
β’ ((π β§ π΅ β πΆ) β (πΈ β π½) = (π½ β πΈ)) |
62 | 59, 60, 61 | 3eqtr3d 2781 |
. . . 4
β’ ((π β§ π΅ β πΆ) β (π΅ β πΆ) = (π½ β πΈ)) |
63 | 33, 32 | eqtr4d 2776 |
. . . . 5
β’ (π β (πΆ β πΉ) = (πΈ β π·)) |
64 | 63 | adantr 482 |
. . . 4
β’ ((π β§ π΅ β πΆ) β (πΆ β πΉ) = (πΈ β π·)) |
65 | 1, 2, 3, 4, 21, 22, 23, 5, 26, 28 | tgbtwnexch3 27745 |
. . . . . 6
β’ (π β π· β (π΅πΌπΈ)) |
66 | 65 | adantr 482 |
. . . . 5
β’ ((π β§ π΅ β πΆ) β π· β (π΅πΌπΈ)) |
67 | 1, 2, 3, 4, 21, 13, 6, 27, 29, 31 | tgbtwnexch3 27745 |
. . . . . . 7
β’ (π β πΉ β (πΆπΌπ½)) |
68 | 1, 2, 3, 4, 13, 6,
27, 67 | tgbtwncom 27739 |
. . . . . 6
β’ (π β πΉ β (π½πΌπΆ)) |
69 | 68 | adantr 482 |
. . . . 5
β’ ((π β§ π΅ β πΆ) β πΉ β (π½πΌπΆ)) |
70 | 1, 2, 3, 4, 27, 6 | axtgcgrrflx 27713 |
. . . . . . 7
β’ (π β (π½ β πΉ) = (πΉ β π½)) |
71 | 70, 34 | eqtr2d 2774 |
. . . . . 6
β’ (π β (π΅ β π·) = (π½ β πΉ)) |
72 | 71 | adantr 482 |
. . . . 5
β’ ((π β§ π΅ β πΆ) β (π΅ β π·) = (π½ β πΉ)) |
73 | 1, 2, 3, 4, 13, 6,
5, 23, 63 | tgcgrcomlr 27731 |
. . . . . . 7
β’ (π β (πΉ β πΆ) = (π· β πΈ)) |
74 | 73 | adantr 482 |
. . . . . 6
β’ ((π β§ π΅ β πΆ) β (πΉ β πΆ) = (π· β πΈ)) |
75 | 74 | eqcomd 2739 |
. . . . 5
β’ ((π β§ π΅ β πΆ) β (π· β πΈ) = (πΉ β πΆ)) |
76 | 1, 2, 3, 43, 48, 46, 45, 49, 44, 47, 66, 69, 72, 75 | tgcgrextend 27736 |
. . . 4
β’ ((π β§ π΅ β πΆ) β (π΅ β πΈ) = (π½ β πΆ)) |
77 | 1, 2, 3, 43, 47, 45 | axtgcgrrflx 27713 |
. . . 4
β’ ((π β§ π΅ β πΆ) β (πΆ β πΈ) = (πΈ β πΆ)) |
78 | 1, 2, 3, 43, 48, 47, 44, 49, 45, 46, 45, 47, 50, 52, 57, 62, 64, 76, 77 | axtg5seg 27716 |
. . 3
β’ ((π β§ π΅ β πΆ) β (πΉ β πΈ) = (π· β πΆ)) |
79 | 1, 2, 3, 43, 44, 45, 46, 47, 78 | tgcgrcomlr 27731 |
. 2
β’ ((π β§ π΅ β πΆ) β (πΈ β πΉ) = (πΆ β π·)) |
80 | 42, 79 | pm2.61dane 3030 |
1
β’ (π β (πΈ β πΉ) = (πΆ β π·)) |