MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconn1lem2 Structured version   Visualization version   GIF version

Theorem tgbtwnconn1lem2 27824
Description: Lemma for tgbtwnconn1 27826. (Contributed by Thierry Arnoux, 30-Apr-2019.)
Hypotheses
Ref Expression
tgbtwnconn1.p 𝑃 = (Baseβ€˜πΊ)
tgbtwnconn1.i 𝐼 = (Itvβ€˜πΊ)
tgbtwnconn1.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgbtwnconn1.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgbtwnconn1.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgbtwnconn1.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgbtwnconn1.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
tgbtwnconn1.1 (πœ‘ β†’ 𝐴 β‰  𝐡)
tgbtwnconn1.2 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
tgbtwnconn1.3 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))
tgbtwnconn1.m βˆ’ = (distβ€˜πΊ)
tgbtwnconn1.e (πœ‘ β†’ 𝐸 ∈ 𝑃)
tgbtwnconn1.f (πœ‘ β†’ 𝐹 ∈ 𝑃)
tgbtwnconn1.h (πœ‘ β†’ 𝐻 ∈ 𝑃)
tgbtwnconn1.j (πœ‘ β†’ 𝐽 ∈ 𝑃)
tgbtwnconn1.4 (πœ‘ β†’ 𝐷 ∈ (𝐴𝐼𝐸))
tgbtwnconn1.5 (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐹))
tgbtwnconn1.6 (πœ‘ β†’ 𝐸 ∈ (𝐴𝐼𝐻))
tgbtwnconn1.7 (πœ‘ β†’ 𝐹 ∈ (𝐴𝐼𝐽))
tgbtwnconn1.8 (πœ‘ β†’ (𝐸 βˆ’ 𝐷) = (𝐢 βˆ’ 𝐷))
tgbtwnconn1.9 (πœ‘ β†’ (𝐢 βˆ’ 𝐹) = (𝐢 βˆ’ 𝐷))
tgbtwnconn1.10 (πœ‘ β†’ (𝐸 βˆ’ 𝐻) = (𝐡 βˆ’ 𝐢))
tgbtwnconn1.11 (πœ‘ β†’ (𝐹 βˆ’ 𝐽) = (𝐡 βˆ’ 𝐷))
Assertion
Ref Expression
tgbtwnconn1lem2 (πœ‘ β†’ (𝐸 βˆ’ 𝐹) = (𝐢 βˆ’ 𝐷))

Proof of Theorem tgbtwnconn1lem2
StepHypRef Expression
1 tgbtwnconn1.p . . . . 5 𝑃 = (Baseβ€˜πΊ)
2 tgbtwnconn1.m . . . . 5 βˆ’ = (distβ€˜πΊ)
3 tgbtwnconn1.i . . . . 5 𝐼 = (Itvβ€˜πΊ)
4 tgbtwnconn1.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ TarskiG)
5 tgbtwnconn1.e . . . . 5 (πœ‘ β†’ 𝐸 ∈ 𝑃)
6 tgbtwnconn1.f . . . . 5 (πœ‘ β†’ 𝐹 ∈ 𝑃)
71, 2, 3, 4, 5, 6axtgcgrrflx 27713 . . . 4 (πœ‘ β†’ (𝐸 βˆ’ 𝐹) = (𝐹 βˆ’ 𝐸))
87adantr 482 . . 3 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ (𝐸 βˆ’ 𝐹) = (𝐹 βˆ’ 𝐸))
94adantr 482 . . . . . . 7 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ 𝐺 ∈ TarskiG)
105adantr 482 . . . . . . 7 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ 𝐸 ∈ 𝑃)
11 tgbtwnconn1.h . . . . . . . 8 (πœ‘ β†’ 𝐻 ∈ 𝑃)
1211adantr 482 . . . . . . 7 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ 𝐻 ∈ 𝑃)
13 tgbtwnconn1.c . . . . . . . 8 (πœ‘ β†’ 𝐢 ∈ 𝑃)
1413adantr 482 . . . . . . 7 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ 𝐢 ∈ 𝑃)
15 tgbtwnconn1.10 . . . . . . . . 9 (πœ‘ β†’ (𝐸 βˆ’ 𝐻) = (𝐡 βˆ’ 𝐢))
1615adantr 482 . . . . . . . 8 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ (𝐸 βˆ’ 𝐻) = (𝐡 βˆ’ 𝐢))
17 simpr 486 . . . . . . . . 9 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ 𝐡 = 𝐢)
1817oveq1d 7424 . . . . . . . 8 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ (𝐡 βˆ’ 𝐢) = (𝐢 βˆ’ 𝐢))
1916, 18eqtrd 2773 . . . . . . 7 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ (𝐸 βˆ’ 𝐻) = (𝐢 βˆ’ 𝐢))
201, 2, 3, 9, 10, 12, 14, 19axtgcgrid 27714 . . . . . 6 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ 𝐸 = 𝐻)
21 tgbtwnconn1.a . . . . . . . 8 (πœ‘ β†’ 𝐴 ∈ 𝑃)
22 tgbtwnconn1.b . . . . . . . 8 (πœ‘ β†’ 𝐡 ∈ 𝑃)
23 tgbtwnconn1.d . . . . . . . 8 (πœ‘ β†’ 𝐷 ∈ 𝑃)
24 tgbtwnconn1.1 . . . . . . . 8 (πœ‘ β†’ 𝐴 β‰  𝐡)
25 tgbtwnconn1.2 . . . . . . . 8 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
26 tgbtwnconn1.3 . . . . . . . 8 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))
27 tgbtwnconn1.j . . . . . . . 8 (πœ‘ β†’ 𝐽 ∈ 𝑃)
28 tgbtwnconn1.4 . . . . . . . 8 (πœ‘ β†’ 𝐷 ∈ (𝐴𝐼𝐸))
29 tgbtwnconn1.5 . . . . . . . 8 (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐹))
30 tgbtwnconn1.6 . . . . . . . 8 (πœ‘ β†’ 𝐸 ∈ (𝐴𝐼𝐻))
31 tgbtwnconn1.7 . . . . . . . 8 (πœ‘ β†’ 𝐹 ∈ (𝐴𝐼𝐽))
32 tgbtwnconn1.8 . . . . . . . 8 (πœ‘ β†’ (𝐸 βˆ’ 𝐷) = (𝐢 βˆ’ 𝐷))
33 tgbtwnconn1.9 . . . . . . . 8 (πœ‘ β†’ (𝐢 βˆ’ 𝐹) = (𝐢 βˆ’ 𝐷))
34 tgbtwnconn1.11 . . . . . . . 8 (πœ‘ β†’ (𝐹 βˆ’ 𝐽) = (𝐡 βˆ’ 𝐷))
351, 3, 4, 21, 22, 13, 23, 24, 25, 26, 2, 5, 6, 11, 27, 28, 29, 30, 31, 32, 33, 15, 34tgbtwnconn1lem1 27823 . . . . . . 7 (πœ‘ β†’ 𝐻 = 𝐽)
3635adantr 482 . . . . . 6 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ 𝐻 = 𝐽)
3720, 36eqtrd 2773 . . . . 5 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ 𝐸 = 𝐽)
3837oveq2d 7425 . . . 4 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ (𝐹 βˆ’ 𝐸) = (𝐹 βˆ’ 𝐽))
3934adantr 482 . . . 4 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ (𝐹 βˆ’ 𝐽) = (𝐡 βˆ’ 𝐷))
4017oveq1d 7424 . . . 4 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ (𝐡 βˆ’ 𝐷) = (𝐢 βˆ’ 𝐷))
4138, 39, 403eqtrd 2777 . . 3 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ (𝐹 βˆ’ 𝐸) = (𝐢 βˆ’ 𝐷))
428, 41eqtrd 2773 . 2 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ (𝐸 βˆ’ 𝐹) = (𝐢 βˆ’ 𝐷))
434adantr 482 . . 3 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐺 ∈ TarskiG)
446adantr 482 . . 3 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐹 ∈ 𝑃)
455adantr 482 . . 3 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐸 ∈ 𝑃)
4623adantr 482 . . 3 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐷 ∈ 𝑃)
4713adantr 482 . . 3 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐢 ∈ 𝑃)
4822adantr 482 . . . 4 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐡 ∈ 𝑃)
4927adantr 482 . . . 4 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐽 ∈ 𝑃)
50 simpr 486 . . . 4 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐡 β‰  𝐢)
511, 2, 3, 4, 21, 22, 13, 6, 25, 29tgbtwnexch3 27745 . . . . 5 (πœ‘ β†’ 𝐢 ∈ (𝐡𝐼𝐹))
5251adantr 482 . . . 4 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐢 ∈ (𝐡𝐼𝐹))
5335oveq2d 7425 . . . . . . . 8 (πœ‘ β†’ (𝐴𝐼𝐻) = (𝐴𝐼𝐽))
5430, 53eleqtrd 2836 . . . . . . 7 (πœ‘ β†’ 𝐸 ∈ (𝐴𝐼𝐽))
551, 2, 3, 4, 21, 23, 5, 27, 28, 54tgbtwnexch3 27745 . . . . . 6 (πœ‘ β†’ 𝐸 ∈ (𝐷𝐼𝐽))
561, 2, 3, 4, 23, 5, 27, 55tgbtwncom 27739 . . . . 5 (πœ‘ β†’ 𝐸 ∈ (𝐽𝐼𝐷))
5756adantr 482 . . . 4 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐸 ∈ (𝐽𝐼𝐷))
5835adantr 482 . . . . . 6 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐻 = 𝐽)
5958oveq2d 7425 . . . . 5 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ (𝐸 βˆ’ 𝐻) = (𝐸 βˆ’ 𝐽))
6015adantr 482 . . . . 5 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ (𝐸 βˆ’ 𝐻) = (𝐡 βˆ’ 𝐢))
611, 2, 3, 43, 45, 49axtgcgrrflx 27713 . . . . 5 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ (𝐸 βˆ’ 𝐽) = (𝐽 βˆ’ 𝐸))
6259, 60, 613eqtr3d 2781 . . . 4 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ (𝐡 βˆ’ 𝐢) = (𝐽 βˆ’ 𝐸))
6333, 32eqtr4d 2776 . . . . 5 (πœ‘ β†’ (𝐢 βˆ’ 𝐹) = (𝐸 βˆ’ 𝐷))
6463adantr 482 . . . 4 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ (𝐢 βˆ’ 𝐹) = (𝐸 βˆ’ 𝐷))
651, 2, 3, 4, 21, 22, 23, 5, 26, 28tgbtwnexch3 27745 . . . . . 6 (πœ‘ β†’ 𝐷 ∈ (𝐡𝐼𝐸))
6665adantr 482 . . . . 5 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐷 ∈ (𝐡𝐼𝐸))
671, 2, 3, 4, 21, 13, 6, 27, 29, 31tgbtwnexch3 27745 . . . . . . 7 (πœ‘ β†’ 𝐹 ∈ (𝐢𝐼𝐽))
681, 2, 3, 4, 13, 6, 27, 67tgbtwncom 27739 . . . . . 6 (πœ‘ β†’ 𝐹 ∈ (𝐽𝐼𝐢))
6968adantr 482 . . . . 5 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐹 ∈ (𝐽𝐼𝐢))
701, 2, 3, 4, 27, 6axtgcgrrflx 27713 . . . . . . 7 (πœ‘ β†’ (𝐽 βˆ’ 𝐹) = (𝐹 βˆ’ 𝐽))
7170, 34eqtr2d 2774 . . . . . 6 (πœ‘ β†’ (𝐡 βˆ’ 𝐷) = (𝐽 βˆ’ 𝐹))
7271adantr 482 . . . . 5 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ (𝐡 βˆ’ 𝐷) = (𝐽 βˆ’ 𝐹))
731, 2, 3, 4, 13, 6, 5, 23, 63tgcgrcomlr 27731 . . . . . . 7 (πœ‘ β†’ (𝐹 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐸))
7473adantr 482 . . . . . 6 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ (𝐹 βˆ’ 𝐢) = (𝐷 βˆ’ 𝐸))
7574eqcomd 2739 . . . . 5 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ (𝐷 βˆ’ 𝐸) = (𝐹 βˆ’ 𝐢))
761, 2, 3, 43, 48, 46, 45, 49, 44, 47, 66, 69, 72, 75tgcgrextend 27736 . . . 4 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ (𝐡 βˆ’ 𝐸) = (𝐽 βˆ’ 𝐢))
771, 2, 3, 43, 47, 45axtgcgrrflx 27713 . . . 4 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ (𝐢 βˆ’ 𝐸) = (𝐸 βˆ’ 𝐢))
781, 2, 3, 43, 48, 47, 44, 49, 45, 46, 45, 47, 50, 52, 57, 62, 64, 76, 77axtg5seg 27716 . . 3 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ (𝐹 βˆ’ 𝐸) = (𝐷 βˆ’ 𝐢))
791, 2, 3, 43, 44, 45, 46, 47, 78tgcgrcomlr 27731 . 2 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ (𝐸 βˆ’ 𝐹) = (𝐢 βˆ’ 𝐷))
8042, 79pm2.61dane 3030 1 (πœ‘ β†’ (𝐸 βˆ’ 𝐹) = (𝐢 βˆ’ 𝐷))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  distcds 17206  TarskiGcstrkg 27678  Itvcitv 27684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-trkgc 27699  df-trkgb 27700  df-trkgcb 27701  df-trkg 27704
This theorem is referenced by:  tgbtwnconn1lem3  27825
  Copyright terms: Public domain W3C validator