MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssub Structured version   Visualization version   GIF version

Theorem tsmssub 24043
Description: The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
tsmssub.b 𝐵 = (Base‘𝐺)
tsmssub.p = (-g𝐺)
tsmssub.1 (𝜑𝐺 ∈ CMnd)
tsmssub.2 (𝜑𝐺 ∈ TopGrp)
tsmssub.a (𝜑𝐴𝑉)
tsmssub.f (𝜑𝐹:𝐴𝐵)
tsmssub.h (𝜑𝐻:𝐴𝐵)
tsmssub.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
tsmssub.y (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
Assertion
Ref Expression
tsmssub (𝜑 → (𝑋 𝑌) ∈ (𝐺 tsums (𝐹f 𝐻)))

Proof of Theorem tsmssub
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmssub.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2730 . . 3 (+g𝐺) = (+g𝐺)
3 tsmssub.1 . . 3 (𝜑𝐺 ∈ CMnd)
4 tsmssub.2 . . . 4 (𝜑𝐺 ∈ TopGrp)
5 tgptmd 23973 . . . 4 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ TopMnd)
7 tsmssub.a . . 3 (𝜑𝐴𝑉)
8 tsmssub.f . . 3 (𝜑𝐹:𝐴𝐵)
9 tgpgrp 23972 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
10 eqid 2730 . . . . . 6 (invg𝐺) = (invg𝐺)
111, 10grpinvf 18925 . . . . 5 (𝐺 ∈ Grp → (invg𝐺):𝐵𝐵)
124, 9, 113syl 18 . . . 4 (𝜑 → (invg𝐺):𝐵𝐵)
13 tsmssub.h . . . 4 (𝜑𝐻:𝐴𝐵)
14 fco 6715 . . . 4 (((invg𝐺):𝐵𝐵𝐻:𝐴𝐵) → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
1512, 13, 14syl2anc 584 . . 3 (𝜑 → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
16 tsmssub.x . . 3 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
17 tsmssub.y . . . 4 (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
181, 10, 3, 4, 7, 13, 17tsmsinv 24042 . . 3 (𝜑 → ((invg𝐺)‘𝑌) ∈ (𝐺 tsums ((invg𝐺) ∘ 𝐻)))
191, 2, 3, 6, 7, 8, 15, 16, 18tsmsadd 24041 . 2 (𝜑 → (𝑋(+g𝐺)((invg𝐺)‘𝑌)) ∈ (𝐺 tsums (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
20 tgptps 23974 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
214, 20syl 17 . . . . 5 (𝜑𝐺 ∈ TopSp)
221, 3, 21, 7, 8tsmscl 24029 . . . 4 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
2322, 16sseldd 3950 . . 3 (𝜑𝑋𝐵)
241, 3, 21, 7, 13tsmscl 24029 . . . 4 (𝜑 → (𝐺 tsums 𝐻) ⊆ 𝐵)
2524, 17sseldd 3950 . . 3 (𝜑𝑌𝐵)
26 tsmssub.p . . . 4 = (-g𝐺)
271, 2, 10, 26grpsubval 18924 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2823, 25, 27syl2anc 584 . 2 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
298ffvelcdmda 7059 . . . . . 6 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
3013ffvelcdmda 7059 . . . . . 6 ((𝜑𝑘𝐴) → (𝐻𝑘) ∈ 𝐵)
311, 2, 10, 26grpsubval 18924 . . . . . 6 (((𝐹𝑘) ∈ 𝐵 ∧ (𝐻𝑘) ∈ 𝐵) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3229, 30, 31syl2anc 584 . . . . 5 ((𝜑𝑘𝐴) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3332mpteq2dva 5203 . . . 4 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
348feqmptd 6932 . . . . 5 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
3513feqmptd 6932 . . . . 5 (𝜑𝐻 = (𝑘𝐴 ↦ (𝐻𝑘)))
367, 29, 30, 34, 35offval2 7676 . . . 4 (𝜑 → (𝐹f 𝐻) = (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))))
37 fvexd 6876 . . . . 5 ((𝜑𝑘𝐴) → ((invg𝐺)‘(𝐻𝑘)) ∈ V)
3812feqmptd 6932 . . . . . 6 (𝜑 → (invg𝐺) = (𝑥𝐵 ↦ ((invg𝐺)‘𝑥)))
39 fveq2 6861 . . . . . 6 (𝑥 = (𝐻𝑘) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝐻𝑘)))
4030, 35, 38, 39fmptco 7104 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) = (𝑘𝐴 ↦ ((invg𝐺)‘(𝐻𝑘))))
417, 29, 37, 34, 40offval2 7676 . . . 4 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
4233, 36, 413eqtr4d 2775 . . 3 (𝜑 → (𝐹f 𝐻) = (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)))
4342oveq2d 7406 . 2 (𝜑 → (𝐺 tsums (𝐹f 𝐻)) = (𝐺 tsums (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
4419, 28, 433eltr4d 2844 1 (𝜑 → (𝑋 𝑌) ∈ (𝐺 tsums (𝐹f 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5191  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  Basecbs 17186  +gcplusg 17227  Grpcgrp 18872  invgcminusg 18873  -gcsg 18874  CMndccmn 19717  TopSpctps 22826  TopMndctmd 23964  TopGrpctgp 23965   tsums ctsu 24020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-topgen 17413  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-ntr 22914  df-nei 22992  df-cn 23121  df-cnp 23122  df-tx 23456  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-tmd 23966  df-tgp 23967  df-tsms 24021
This theorem is referenced by:  tgptsmscls  24044
  Copyright terms: Public domain W3C validator