MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssub Structured version   Visualization version   GIF version

Theorem tsmssub 23516
Description: The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
tsmssub.b 𝐵 = (Base‘𝐺)
tsmssub.p = (-g𝐺)
tsmssub.1 (𝜑𝐺 ∈ CMnd)
tsmssub.2 (𝜑𝐺 ∈ TopGrp)
tsmssub.a (𝜑𝐴𝑉)
tsmssub.f (𝜑𝐹:𝐴𝐵)
tsmssub.h (𝜑𝐻:𝐴𝐵)
tsmssub.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
tsmssub.y (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
Assertion
Ref Expression
tsmssub (𝜑 → (𝑋 𝑌) ∈ (𝐺 tsums (𝐹f 𝐻)))

Proof of Theorem tsmssub
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmssub.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2733 . . 3 (+g𝐺) = (+g𝐺)
3 tsmssub.1 . . 3 (𝜑𝐺 ∈ CMnd)
4 tsmssub.2 . . . 4 (𝜑𝐺 ∈ TopGrp)
5 tgptmd 23446 . . . 4 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ TopMnd)
7 tsmssub.a . . 3 (𝜑𝐴𝑉)
8 tsmssub.f . . 3 (𝜑𝐹:𝐴𝐵)
9 tgpgrp 23445 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
10 eqid 2733 . . . . . 6 (invg𝐺) = (invg𝐺)
111, 10grpinvf 18802 . . . . 5 (𝐺 ∈ Grp → (invg𝐺):𝐵𝐵)
124, 9, 113syl 18 . . . 4 (𝜑 → (invg𝐺):𝐵𝐵)
13 tsmssub.h . . . 4 (𝜑𝐻:𝐴𝐵)
14 fco 6693 . . . 4 (((invg𝐺):𝐵𝐵𝐻:𝐴𝐵) → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
1512, 13, 14syl2anc 585 . . 3 (𝜑 → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
16 tsmssub.x . . 3 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
17 tsmssub.y . . . 4 (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
181, 10, 3, 4, 7, 13, 17tsmsinv 23515 . . 3 (𝜑 → ((invg𝐺)‘𝑌) ∈ (𝐺 tsums ((invg𝐺) ∘ 𝐻)))
191, 2, 3, 6, 7, 8, 15, 16, 18tsmsadd 23514 . 2 (𝜑 → (𝑋(+g𝐺)((invg𝐺)‘𝑌)) ∈ (𝐺 tsums (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
20 tgptps 23447 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
214, 20syl 17 . . . . 5 (𝜑𝐺 ∈ TopSp)
221, 3, 21, 7, 8tsmscl 23502 . . . 4 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
2322, 16sseldd 3946 . . 3 (𝜑𝑋𝐵)
241, 3, 21, 7, 13tsmscl 23502 . . . 4 (𝜑 → (𝐺 tsums 𝐻) ⊆ 𝐵)
2524, 17sseldd 3946 . . 3 (𝜑𝑌𝐵)
26 tsmssub.p . . . 4 = (-g𝐺)
271, 2, 10, 26grpsubval 18801 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2823, 25, 27syl2anc 585 . 2 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
298ffvelcdmda 7036 . . . . . 6 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
3013ffvelcdmda 7036 . . . . . 6 ((𝜑𝑘𝐴) → (𝐻𝑘) ∈ 𝐵)
311, 2, 10, 26grpsubval 18801 . . . . . 6 (((𝐹𝑘) ∈ 𝐵 ∧ (𝐻𝑘) ∈ 𝐵) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3229, 30, 31syl2anc 585 . . . . 5 ((𝜑𝑘𝐴) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3332mpteq2dva 5206 . . . 4 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
348feqmptd 6911 . . . . 5 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
3513feqmptd 6911 . . . . 5 (𝜑𝐻 = (𝑘𝐴 ↦ (𝐻𝑘)))
367, 29, 30, 34, 35offval2 7638 . . . 4 (𝜑 → (𝐹f 𝐻) = (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))))
37 fvexd 6858 . . . . 5 ((𝜑𝑘𝐴) → ((invg𝐺)‘(𝐻𝑘)) ∈ V)
3812feqmptd 6911 . . . . . 6 (𝜑 → (invg𝐺) = (𝑥𝐵 ↦ ((invg𝐺)‘𝑥)))
39 fveq2 6843 . . . . . 6 (𝑥 = (𝐻𝑘) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝐻𝑘)))
4030, 35, 38, 39fmptco 7076 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) = (𝑘𝐴 ↦ ((invg𝐺)‘(𝐻𝑘))))
417, 29, 37, 34, 40offval2 7638 . . . 4 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
4233, 36, 413eqtr4d 2783 . . 3 (𝜑 → (𝐹f 𝐻) = (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)))
4342oveq2d 7374 . 2 (𝜑 → (𝐺 tsums (𝐹f 𝐻)) = (𝐺 tsums (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
4419, 28, 433eltr4d 2849 1 (𝜑 → (𝑋 𝑌) ∈ (𝐺 tsums (𝐹f 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3444  cmpt 5189  ccom 5638  wf 6493  cfv 6497  (class class class)co 7358  f cof 7616  Basecbs 17088  +gcplusg 17138  Grpcgrp 18753  invgcminusg 18754  -gcsg 18755  CMndccmn 19567  TopSpctps 22297  TopMndctmd 23437  TopGrpctgp 23438   tsums ctsu 23493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-map 8770  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fsupp 9309  df-oi 9451  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-fzo 13574  df-seq 13913  df-hash 14237  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-0g 17328  df-gsum 17329  df-topgen 17330  df-plusf 18501  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-mhm 18606  df-submnd 18607  df-grp 18756  df-minusg 18757  df-sbg 18758  df-ghm 19011  df-cntz 19102  df-cmn 19569  df-abl 19570  df-fbas 20809  df-fg 20810  df-top 22259  df-topon 22276  df-topsp 22298  df-bases 22312  df-ntr 22387  df-nei 22465  df-cn 22594  df-cnp 22595  df-tx 22929  df-fil 23213  df-fm 23305  df-flim 23306  df-flf 23307  df-tmd 23439  df-tgp 23440  df-tsms 23494
This theorem is referenced by:  tgptsmscls  23517
  Copyright terms: Public domain W3C validator