| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmssub | Structured version Visualization version GIF version | ||
| Description: The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsmssub.b | ⊢ 𝐵 = (Base‘𝐺) |
| tsmssub.p | ⊢ − = (-g‘𝐺) |
| tsmssub.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| tsmssub.2 | ⊢ (𝜑 → 𝐺 ∈ TopGrp) |
| tsmssub.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| tsmssub.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| tsmssub.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
| tsmssub.x | ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) |
| tsmssub.y | ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) |
| Ref | Expression |
|---|---|
| tsmssub | ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐺 tsums (𝐹 ∘f − 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmssub.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | tsmssub.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | tsmssub.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TopGrp) | |
| 5 | tgptmd 23982 | . . . 4 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ TopMnd) |
| 7 | tsmssub.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | tsmssub.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 9 | tgpgrp 23981 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 11 | 1, 10 | grpinvf 18883 | . . . . 5 ⊢ (𝐺 ∈ Grp → (invg‘𝐺):𝐵⟶𝐵) |
| 12 | 4, 9, 11 | 3syl 18 | . . . 4 ⊢ (𝜑 → (invg‘𝐺):𝐵⟶𝐵) |
| 13 | tsmssub.h | . . . 4 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
| 14 | fco 6680 | . . . 4 ⊢ (((invg‘𝐺):𝐵⟶𝐵 ∧ 𝐻:𝐴⟶𝐵) → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) |
| 16 | tsmssub.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) | |
| 17 | tsmssub.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) | |
| 18 | 1, 10, 3, 4, 7, 13, 17 | tsmsinv 24051 | . . 3 ⊢ (𝜑 → ((invg‘𝐺)‘𝑌) ∈ (𝐺 tsums ((invg‘𝐺) ∘ 𝐻))) |
| 19 | 1, 2, 3, 6, 7, 8, 15, 16, 18 | tsmsadd 24050 | . 2 ⊢ (𝜑 → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) ∈ (𝐺 tsums (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)))) |
| 20 | tgptps 23983 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | |
| 21 | 4, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TopSp) |
| 22 | 1, 3, 21, 7, 8 | tsmscl 24038 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) |
| 23 | 22, 16 | sseldd 3938 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 24 | 1, 3, 21, 7, 13 | tsmscl 24038 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐻) ⊆ 𝐵) |
| 25 | 24, 17 | sseldd 3938 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 26 | tsmssub.p | . . . 4 ⊢ − = (-g‘𝐺) | |
| 27 | 1, 2, 10, 26 | grpsubval 18882 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 28 | 23, 25, 27 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 29 | 8 | ffvelcdmda 7022 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
| 30 | 13 | ffvelcdmda 7022 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐻‘𝑘) ∈ 𝐵) |
| 31 | 1, 2, 10, 26 | grpsubval 18882 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ 𝐵 ∧ (𝐻‘𝑘) ∈ 𝐵) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 32 | 29, 30, 31 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 33 | 32 | mpteq2dva 5188 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘))) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
| 34 | 8 | feqmptd 6895 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 35 | 13 | feqmptd 6895 | . . . . 5 ⊢ (𝜑 → 𝐻 = (𝑘 ∈ 𝐴 ↦ (𝐻‘𝑘))) |
| 36 | 7, 29, 30, 34, 35 | offval2 7637 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘)))) |
| 37 | fvexd 6841 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((invg‘𝐺)‘(𝐻‘𝑘)) ∈ V) | |
| 38 | 12 | feqmptd 6895 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘𝑥))) |
| 39 | fveq2 6826 | . . . . . 6 ⊢ (𝑥 = (𝐻‘𝑘) → ((invg‘𝐺)‘𝑥) = ((invg‘𝐺)‘(𝐻‘𝑘))) | |
| 40 | 30, 35, 38, 39 | fmptco 7067 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) = (𝑘 ∈ 𝐴 ↦ ((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 41 | 7, 29, 37, 34, 40 | offval2 7637 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
| 42 | 33, 36, 41 | 3eqtr4d 2774 | . . 3 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) |
| 43 | 42 | oveq2d 7369 | . 2 ⊢ (𝜑 → (𝐺 tsums (𝐹 ∘f − 𝐻)) = (𝐺 tsums (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)))) |
| 44 | 19, 28, 43 | 3eltr4d 2843 | 1 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐺 tsums (𝐹 ∘f − 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ↦ cmpt 5176 ∘ ccom 5627 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 Basecbs 17138 +gcplusg 17179 Grpcgrp 18830 invgcminusg 18831 -gcsg 18832 CMndccmn 19677 TopSpctps 22835 TopMndctmd 23973 TopGrpctgp 23974 tsums ctsu 24029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-0g 17363 df-gsum 17364 df-topgen 17365 df-plusf 18531 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-fbas 21276 df-fg 21277 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-ntr 22923 df-nei 23001 df-cn 23130 df-cnp 23131 df-tx 23465 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-tmd 23975 df-tgp 23976 df-tsms 24030 |
| This theorem is referenced by: tgptsmscls 24053 |
| Copyright terms: Public domain | W3C validator |