![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsmssub | Structured version Visualization version GIF version |
Description: The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015.) |
Ref | Expression |
---|---|
tsmssub.b | ⊢ 𝐵 = (Base‘𝐺) |
tsmssub.p | ⊢ − = (-g‘𝐺) |
tsmssub.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tsmssub.2 | ⊢ (𝜑 → 𝐺 ∈ TopGrp) |
tsmssub.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
tsmssub.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
tsmssub.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
tsmssub.x | ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) |
tsmssub.y | ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) |
Ref | Expression |
---|---|
tsmssub | ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐺 tsums (𝐹 ∘f − 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmssub.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2740 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | tsmssub.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | tsmssub.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TopGrp) | |
5 | tgptmd 24108 | . . . 4 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ TopMnd) |
7 | tsmssub.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | tsmssub.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
9 | tgpgrp 24107 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | |
10 | eqid 2740 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
11 | 1, 10 | grpinvf 19026 | . . . . 5 ⊢ (𝐺 ∈ Grp → (invg‘𝐺):𝐵⟶𝐵) |
12 | 4, 9, 11 | 3syl 18 | . . . 4 ⊢ (𝜑 → (invg‘𝐺):𝐵⟶𝐵) |
13 | tsmssub.h | . . . 4 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
14 | fco 6771 | . . . 4 ⊢ (((invg‘𝐺):𝐵⟶𝐵 ∧ 𝐻:𝐴⟶𝐵) → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) | |
15 | 12, 13, 14 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) |
16 | tsmssub.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) | |
17 | tsmssub.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) | |
18 | 1, 10, 3, 4, 7, 13, 17 | tsmsinv 24177 | . . 3 ⊢ (𝜑 → ((invg‘𝐺)‘𝑌) ∈ (𝐺 tsums ((invg‘𝐺) ∘ 𝐻))) |
19 | 1, 2, 3, 6, 7, 8, 15, 16, 18 | tsmsadd 24176 | . 2 ⊢ (𝜑 → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) ∈ (𝐺 tsums (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)))) |
20 | tgptps 24109 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | |
21 | 4, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TopSp) |
22 | 1, 3, 21, 7, 8 | tsmscl 24164 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) |
23 | 22, 16 | sseldd 4009 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
24 | 1, 3, 21, 7, 13 | tsmscl 24164 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐻) ⊆ 𝐵) |
25 | 24, 17 | sseldd 4009 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
26 | tsmssub.p | . . . 4 ⊢ − = (-g‘𝐺) | |
27 | 1, 2, 10, 26 | grpsubval 19025 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
28 | 23, 25, 27 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
29 | 8 | ffvelcdmda 7118 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
30 | 13 | ffvelcdmda 7118 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐻‘𝑘) ∈ 𝐵) |
31 | 1, 2, 10, 26 | grpsubval 19025 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ 𝐵 ∧ (𝐻‘𝑘) ∈ 𝐵) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
32 | 29, 30, 31 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
33 | 32 | mpteq2dva 5266 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘))) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
34 | 8 | feqmptd 6990 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
35 | 13 | feqmptd 6990 | . . . . 5 ⊢ (𝜑 → 𝐻 = (𝑘 ∈ 𝐴 ↦ (𝐻‘𝑘))) |
36 | 7, 29, 30, 34, 35 | offval2 7734 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘)))) |
37 | fvexd 6935 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((invg‘𝐺)‘(𝐻‘𝑘)) ∈ V) | |
38 | 12 | feqmptd 6990 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘𝑥))) |
39 | fveq2 6920 | . . . . . 6 ⊢ (𝑥 = (𝐻‘𝑘) → ((invg‘𝐺)‘𝑥) = ((invg‘𝐺)‘(𝐻‘𝑘))) | |
40 | 30, 35, 38, 39 | fmptco 7163 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) = (𝑘 ∈ 𝐴 ↦ ((invg‘𝐺)‘(𝐻‘𝑘)))) |
41 | 7, 29, 37, 34, 40 | offval2 7734 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
42 | 33, 36, 41 | 3eqtr4d 2790 | . . 3 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) |
43 | 42 | oveq2d 7464 | . 2 ⊢ (𝜑 → (𝐺 tsums (𝐹 ∘f − 𝐻)) = (𝐺 tsums (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)))) |
44 | 19, 28, 43 | 3eltr4d 2859 | 1 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐺 tsums (𝐹 ∘f − 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 Basecbs 17258 +gcplusg 17311 Grpcgrp 18973 invgcminusg 18974 -gcsg 18975 CMndccmn 19822 TopSpctps 22959 TopMndctmd 24099 TopGrpctgp 24100 tsums ctsu 24155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-gsum 17502 df-topgen 17503 df-plusf 18677 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-fbas 21384 df-fg 21385 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-ntr 23049 df-nei 23127 df-cn 23256 df-cnp 23257 df-tx 23591 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-tmd 24101 df-tgp 24102 df-tsms 24156 |
This theorem is referenced by: tgptsmscls 24179 |
Copyright terms: Public domain | W3C validator |