| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmssub | Structured version Visualization version GIF version | ||
| Description: The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsmssub.b | ⊢ 𝐵 = (Base‘𝐺) |
| tsmssub.p | ⊢ − = (-g‘𝐺) |
| tsmssub.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| tsmssub.2 | ⊢ (𝜑 → 𝐺 ∈ TopGrp) |
| tsmssub.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| tsmssub.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| tsmssub.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
| tsmssub.x | ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) |
| tsmssub.y | ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) |
| Ref | Expression |
|---|---|
| tsmssub | ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐺 tsums (𝐹 ∘f − 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmssub.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2733 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | tsmssub.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | tsmssub.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TopGrp) | |
| 5 | tgptmd 23995 | . . . 4 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ TopMnd) |
| 7 | tsmssub.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | tsmssub.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 9 | tgpgrp 23994 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | |
| 10 | eqid 2733 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 11 | 1, 10 | grpinvf 18901 | . . . . 5 ⊢ (𝐺 ∈ Grp → (invg‘𝐺):𝐵⟶𝐵) |
| 12 | 4, 9, 11 | 3syl 18 | . . . 4 ⊢ (𝜑 → (invg‘𝐺):𝐵⟶𝐵) |
| 13 | tsmssub.h | . . . 4 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
| 14 | fco 6680 | . . . 4 ⊢ (((invg‘𝐺):𝐵⟶𝐵 ∧ 𝐻:𝐴⟶𝐵) → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) |
| 16 | tsmssub.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) | |
| 17 | tsmssub.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) | |
| 18 | 1, 10, 3, 4, 7, 13, 17 | tsmsinv 24064 | . . 3 ⊢ (𝜑 → ((invg‘𝐺)‘𝑌) ∈ (𝐺 tsums ((invg‘𝐺) ∘ 𝐻))) |
| 19 | 1, 2, 3, 6, 7, 8, 15, 16, 18 | tsmsadd 24063 | . 2 ⊢ (𝜑 → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) ∈ (𝐺 tsums (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)))) |
| 20 | tgptps 23996 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | |
| 21 | 4, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TopSp) |
| 22 | 1, 3, 21, 7, 8 | tsmscl 24051 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) |
| 23 | 22, 16 | sseldd 3931 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 24 | 1, 3, 21, 7, 13 | tsmscl 24051 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐻) ⊆ 𝐵) |
| 25 | 24, 17 | sseldd 3931 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 26 | tsmssub.p | . . . 4 ⊢ − = (-g‘𝐺) | |
| 27 | 1, 2, 10, 26 | grpsubval 18900 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 28 | 23, 25, 27 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 29 | 8 | ffvelcdmda 7023 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
| 30 | 13 | ffvelcdmda 7023 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐻‘𝑘) ∈ 𝐵) |
| 31 | 1, 2, 10, 26 | grpsubval 18900 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ 𝐵 ∧ (𝐻‘𝑘) ∈ 𝐵) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 32 | 29, 30, 31 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 33 | 32 | mpteq2dva 5186 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘))) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
| 34 | 8 | feqmptd 6896 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 35 | 13 | feqmptd 6896 | . . . . 5 ⊢ (𝜑 → 𝐻 = (𝑘 ∈ 𝐴 ↦ (𝐻‘𝑘))) |
| 36 | 7, 29, 30, 34, 35 | offval2 7636 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘)))) |
| 37 | fvexd 6843 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((invg‘𝐺)‘(𝐻‘𝑘)) ∈ V) | |
| 38 | 12 | feqmptd 6896 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘𝑥))) |
| 39 | fveq2 6828 | . . . . . 6 ⊢ (𝑥 = (𝐻‘𝑘) → ((invg‘𝐺)‘𝑥) = ((invg‘𝐺)‘(𝐻‘𝑘))) | |
| 40 | 30, 35, 38, 39 | fmptco 7068 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) = (𝑘 ∈ 𝐴 ↦ ((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 41 | 7, 29, 37, 34, 40 | offval2 7636 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
| 42 | 33, 36, 41 | 3eqtr4d 2778 | . . 3 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) |
| 43 | 42 | oveq2d 7368 | . 2 ⊢ (𝜑 → (𝐺 tsums (𝐹 ∘f − 𝐻)) = (𝐺 tsums (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)))) |
| 44 | 19, 28, 43 | 3eltr4d 2848 | 1 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐺 tsums (𝐹 ∘f − 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ↦ cmpt 5174 ∘ ccom 5623 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ∘f cof 7614 Basecbs 17122 +gcplusg 17163 Grpcgrp 18848 invgcminusg 18849 -gcsg 18850 CMndccmn 19694 TopSpctps 22848 TopMndctmd 23986 TopGrpctgp 23987 tsums ctsu 24042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-gsum 17348 df-topgen 17349 df-plusf 18549 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-fbas 21290 df-fg 21291 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-ntr 22936 df-nei 23014 df-cn 23143 df-cnp 23144 df-tx 23478 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-tmd 23988 df-tgp 23989 df-tsms 24043 |
| This theorem is referenced by: tgptsmscls 24066 |
| Copyright terms: Public domain | W3C validator |