MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssub Structured version   Visualization version   GIF version

Theorem tsmssub 23046
Description: The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
tsmssub.b 𝐵 = (Base‘𝐺)
tsmssub.p = (-g𝐺)
tsmssub.1 (𝜑𝐺 ∈ CMnd)
tsmssub.2 (𝜑𝐺 ∈ TopGrp)
tsmssub.a (𝜑𝐴𝑉)
tsmssub.f (𝜑𝐹:𝐴𝐵)
tsmssub.h (𝜑𝐻:𝐴𝐵)
tsmssub.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
tsmssub.y (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
Assertion
Ref Expression
tsmssub (𝜑 → (𝑋 𝑌) ∈ (𝐺 tsums (𝐹f 𝐻)))

Proof of Theorem tsmssub
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmssub.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2737 . . 3 (+g𝐺) = (+g𝐺)
3 tsmssub.1 . . 3 (𝜑𝐺 ∈ CMnd)
4 tsmssub.2 . . . 4 (𝜑𝐺 ∈ TopGrp)
5 tgptmd 22976 . . . 4 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ TopMnd)
7 tsmssub.a . . 3 (𝜑𝐴𝑉)
8 tsmssub.f . . 3 (𝜑𝐹:𝐴𝐵)
9 tgpgrp 22975 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
10 eqid 2737 . . . . . 6 (invg𝐺) = (invg𝐺)
111, 10grpinvf 18414 . . . . 5 (𝐺 ∈ Grp → (invg𝐺):𝐵𝐵)
124, 9, 113syl 18 . . . 4 (𝜑 → (invg𝐺):𝐵𝐵)
13 tsmssub.h . . . 4 (𝜑𝐻:𝐴𝐵)
14 fco 6569 . . . 4 (((invg𝐺):𝐵𝐵𝐻:𝐴𝐵) → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
1512, 13, 14syl2anc 587 . . 3 (𝜑 → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
16 tsmssub.x . . 3 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
17 tsmssub.y . . . 4 (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
181, 10, 3, 4, 7, 13, 17tsmsinv 23045 . . 3 (𝜑 → ((invg𝐺)‘𝑌) ∈ (𝐺 tsums ((invg𝐺) ∘ 𝐻)))
191, 2, 3, 6, 7, 8, 15, 16, 18tsmsadd 23044 . 2 (𝜑 → (𝑋(+g𝐺)((invg𝐺)‘𝑌)) ∈ (𝐺 tsums (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
20 tgptps 22977 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
214, 20syl 17 . . . . 5 (𝜑𝐺 ∈ TopSp)
221, 3, 21, 7, 8tsmscl 23032 . . . 4 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
2322, 16sseldd 3902 . . 3 (𝜑𝑋𝐵)
241, 3, 21, 7, 13tsmscl 23032 . . . 4 (𝜑 → (𝐺 tsums 𝐻) ⊆ 𝐵)
2524, 17sseldd 3902 . . 3 (𝜑𝑌𝐵)
26 tsmssub.p . . . 4 = (-g𝐺)
271, 2, 10, 26grpsubval 18413 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2823, 25, 27syl2anc 587 . 2 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
298ffvelrnda 6904 . . . . . 6 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
3013ffvelrnda 6904 . . . . . 6 ((𝜑𝑘𝐴) → (𝐻𝑘) ∈ 𝐵)
311, 2, 10, 26grpsubval 18413 . . . . . 6 (((𝐹𝑘) ∈ 𝐵 ∧ (𝐻𝑘) ∈ 𝐵) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3229, 30, 31syl2anc 587 . . . . 5 ((𝜑𝑘𝐴) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3332mpteq2dva 5150 . . . 4 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
348feqmptd 6780 . . . . 5 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
3513feqmptd 6780 . . . . 5 (𝜑𝐻 = (𝑘𝐴 ↦ (𝐻𝑘)))
367, 29, 30, 34, 35offval2 7488 . . . 4 (𝜑 → (𝐹f 𝐻) = (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))))
37 fvexd 6732 . . . . 5 ((𝜑𝑘𝐴) → ((invg𝐺)‘(𝐻𝑘)) ∈ V)
3812feqmptd 6780 . . . . . 6 (𝜑 → (invg𝐺) = (𝑥𝐵 ↦ ((invg𝐺)‘𝑥)))
39 fveq2 6717 . . . . . 6 (𝑥 = (𝐻𝑘) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝐻𝑘)))
4030, 35, 38, 39fmptco 6944 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) = (𝑘𝐴 ↦ ((invg𝐺)‘(𝐻𝑘))))
417, 29, 37, 34, 40offval2 7488 . . . 4 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
4233, 36, 413eqtr4d 2787 . . 3 (𝜑 → (𝐹f 𝐻) = (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)))
4342oveq2d 7229 . 2 (𝜑 → (𝐺 tsums (𝐹f 𝐻)) = (𝐺 tsums (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
4419, 28, 433eltr4d 2853 1 (𝜑 → (𝑋 𝑌) ∈ (𝐺 tsums (𝐹f 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  cmpt 5135  ccom 5555  wf 6376  cfv 6380  (class class class)co 7213  f cof 7467  Basecbs 16760  +gcplusg 16802  Grpcgrp 18365  invgcminusg 18366  -gcsg 18367  CMndccmn 19170  TopSpctps 21829  TopMndctmd 22967  TopGrpctgp 22968   tsums ctsu 23023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-0g 16946  df-gsum 16947  df-topgen 16948  df-plusf 18113  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-fbas 20360  df-fg 20361  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-ntr 21917  df-nei 21995  df-cn 22124  df-cnp 22125  df-tx 22459  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-tmd 22969  df-tgp 22970  df-tsms 23024
This theorem is referenced by:  tgptsmscls  23047
  Copyright terms: Public domain W3C validator