Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssub Structured version   Visualization version   GIF version

Theorem tsmssub 22768
 Description: The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
tsmssub.b 𝐵 = (Base‘𝐺)
tsmssub.p = (-g𝐺)
tsmssub.1 (𝜑𝐺 ∈ CMnd)
tsmssub.2 (𝜑𝐺 ∈ TopGrp)
tsmssub.a (𝜑𝐴𝑉)
tsmssub.f (𝜑𝐹:𝐴𝐵)
tsmssub.h (𝜑𝐻:𝐴𝐵)
tsmssub.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
tsmssub.y (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
Assertion
Ref Expression
tsmssub (𝜑 → (𝑋 𝑌) ∈ (𝐺 tsums (𝐹f 𝐻)))

Proof of Theorem tsmssub
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmssub.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2798 . . 3 (+g𝐺) = (+g𝐺)
3 tsmssub.1 . . 3 (𝜑𝐺 ∈ CMnd)
4 tsmssub.2 . . . 4 (𝜑𝐺 ∈ TopGrp)
5 tgptmd 22698 . . . 4 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ TopMnd)
7 tsmssub.a . . 3 (𝜑𝐴𝑉)
8 tsmssub.f . . 3 (𝜑𝐹:𝐴𝐵)
9 tgpgrp 22697 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
10 eqid 2798 . . . . . 6 (invg𝐺) = (invg𝐺)
111, 10grpinvf 18150 . . . . 5 (𝐺 ∈ Grp → (invg𝐺):𝐵𝐵)
124, 9, 113syl 18 . . . 4 (𝜑 → (invg𝐺):𝐵𝐵)
13 tsmssub.h . . . 4 (𝜑𝐻:𝐴𝐵)
14 fco 6508 . . . 4 (((invg𝐺):𝐵𝐵𝐻:𝐴𝐵) → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
1512, 13, 14syl2anc 587 . . 3 (𝜑 → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
16 tsmssub.x . . 3 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
17 tsmssub.y . . . 4 (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
181, 10, 3, 4, 7, 13, 17tsmsinv 22767 . . 3 (𝜑 → ((invg𝐺)‘𝑌) ∈ (𝐺 tsums ((invg𝐺) ∘ 𝐻)))
191, 2, 3, 6, 7, 8, 15, 16, 18tsmsadd 22766 . 2 (𝜑 → (𝑋(+g𝐺)((invg𝐺)‘𝑌)) ∈ (𝐺 tsums (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
20 tgptps 22699 . . . . . 6 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
214, 20syl 17 . . . . 5 (𝜑𝐺 ∈ TopSp)
221, 3, 21, 7, 8tsmscl 22754 . . . 4 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
2322, 16sseldd 3916 . . 3 (𝜑𝑋𝐵)
241, 3, 21, 7, 13tsmscl 22754 . . . 4 (𝜑 → (𝐺 tsums 𝐻) ⊆ 𝐵)
2524, 17sseldd 3916 . . 3 (𝜑𝑌𝐵)
26 tsmssub.p . . . 4 = (-g𝐺)
271, 2, 10, 26grpsubval 18149 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2823, 25, 27syl2anc 587 . 2 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
298ffvelrnda 6833 . . . . . 6 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
3013ffvelrnda 6833 . . . . . 6 ((𝜑𝑘𝐴) → (𝐻𝑘) ∈ 𝐵)
311, 2, 10, 26grpsubval 18149 . . . . . 6 (((𝐹𝑘) ∈ 𝐵 ∧ (𝐻𝑘) ∈ 𝐵) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3229, 30, 31syl2anc 587 . . . . 5 ((𝜑𝑘𝐴) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3332mpteq2dva 5126 . . . 4 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
348feqmptd 6713 . . . . 5 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
3513feqmptd 6713 . . . . 5 (𝜑𝐻 = (𝑘𝐴 ↦ (𝐻𝑘)))
367, 29, 30, 34, 35offval2 7413 . . . 4 (𝜑 → (𝐹f 𝐻) = (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))))
37 fvexd 6665 . . . . 5 ((𝜑𝑘𝐴) → ((invg𝐺)‘(𝐻𝑘)) ∈ V)
3812feqmptd 6713 . . . . . 6 (𝜑 → (invg𝐺) = (𝑥𝐵 ↦ ((invg𝐺)‘𝑥)))
39 fveq2 6650 . . . . . 6 (𝑥 = (𝐻𝑘) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝐻𝑘)))
4030, 35, 38, 39fmptco 6873 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) = (𝑘𝐴 ↦ ((invg𝐺)‘(𝐻𝑘))))
417, 29, 37, 34, 40offval2 7413 . . . 4 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
4233, 36, 413eqtr4d 2843 . . 3 (𝜑 → (𝐹f 𝐻) = (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)))
4342oveq2d 7156 . 2 (𝜑 → (𝐺 tsums (𝐹f 𝐻)) = (𝐺 tsums (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
4419, 28, 433eltr4d 2905 1 (𝜑 → (𝑋 𝑌) ∈ (𝐺 tsums (𝐹f 𝐻)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3441   ↦ cmpt 5111   ∘ ccom 5524  ⟶wf 6323  ‘cfv 6327  (class class class)co 7140   ∘f cof 7393  Basecbs 16482  +gcplusg 16564  Grpcgrp 18102  invgcminusg 18103  -gcsg 18104  CMndccmn 18906  TopSpctps 21551  TopMndctmd 22689  TopGrpctgp 22690   tsums ctsu 22745 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-isom 6336  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7395  df-om 7568  df-1st 7678  df-2nd 7679  df-supp 7821  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fsupp 8825  df-oi 8965  df-card 9359  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-2 11695  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-fzo 13036  df-seq 13372  df-hash 13694  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-0g 16714  df-gsum 16715  df-topgen 16716  df-plusf 17850  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-fbas 20096  df-fg 20097  df-top 21513  df-topon 21530  df-topsp 21552  df-bases 21565  df-ntr 21639  df-nei 21717  df-cn 21846  df-cnp 21847  df-tx 22181  df-fil 22465  df-fm 22557  df-flim 22558  df-flf 22559  df-tmd 22691  df-tgp 22692  df-tsms 22746 This theorem is referenced by:  tgptsmscls  22769
 Copyright terms: Public domain W3C validator