| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsmssub | Structured version Visualization version GIF version | ||
| Description: The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| Ref | Expression |
|---|---|
| tsmssub.b | ⊢ 𝐵 = (Base‘𝐺) |
| tsmssub.p | ⊢ − = (-g‘𝐺) |
| tsmssub.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| tsmssub.2 | ⊢ (𝜑 → 𝐺 ∈ TopGrp) |
| tsmssub.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| tsmssub.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| tsmssub.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
| tsmssub.x | ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) |
| tsmssub.y | ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) |
| Ref | Expression |
|---|---|
| tsmssub | ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐺 tsums (𝐹 ∘f − 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmssub.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | tsmssub.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | tsmssub.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TopGrp) | |
| 5 | tgptmd 23966 | . . . 4 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ TopMnd) |
| 7 | tsmssub.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | tsmssub.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 9 | tgpgrp 23965 | . . . . 5 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 11 | 1, 10 | grpinvf 18918 | . . . . 5 ⊢ (𝐺 ∈ Grp → (invg‘𝐺):𝐵⟶𝐵) |
| 12 | 4, 9, 11 | 3syl 18 | . . . 4 ⊢ (𝜑 → (invg‘𝐺):𝐵⟶𝐵) |
| 13 | tsmssub.h | . . . 4 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
| 14 | fco 6712 | . . . 4 ⊢ (((invg‘𝐺):𝐵⟶𝐵 ∧ 𝐻:𝐴⟶𝐵) → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻):𝐴⟶𝐵) |
| 16 | tsmssub.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) | |
| 17 | tsmssub.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) | |
| 18 | 1, 10, 3, 4, 7, 13, 17 | tsmsinv 24035 | . . 3 ⊢ (𝜑 → ((invg‘𝐺)‘𝑌) ∈ (𝐺 tsums ((invg‘𝐺) ∘ 𝐻))) |
| 19 | 1, 2, 3, 6, 7, 8, 15, 16, 18 | tsmsadd 24034 | . 2 ⊢ (𝜑 → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) ∈ (𝐺 tsums (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)))) |
| 20 | tgptps 23967 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | |
| 21 | 4, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TopSp) |
| 22 | 1, 3, 21, 7, 8 | tsmscl 24022 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) |
| 23 | 22, 16 | sseldd 3947 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 24 | 1, 3, 21, 7, 13 | tsmscl 24022 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐻) ⊆ 𝐵) |
| 25 | 24, 17 | sseldd 3947 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 26 | tsmssub.p | . . . 4 ⊢ − = (-g‘𝐺) | |
| 27 | 1, 2, 10, 26 | grpsubval 18917 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 28 | 23, 25, 27 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 29 | 8 | ffvelcdmda 7056 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
| 30 | 13 | ffvelcdmda 7056 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐻‘𝑘) ∈ 𝐵) |
| 31 | 1, 2, 10, 26 | grpsubval 18917 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ 𝐵 ∧ (𝐻‘𝑘) ∈ 𝐵) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 32 | 29, 30, 31 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐹‘𝑘) − (𝐻‘𝑘)) = ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 33 | 32 | mpteq2dva 5200 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘))) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
| 34 | 8 | feqmptd 6929 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
| 35 | 13 | feqmptd 6929 | . . . . 5 ⊢ (𝜑 → 𝐻 = (𝑘 ∈ 𝐴 ↦ (𝐻‘𝑘))) |
| 36 | 7, 29, 30, 34, 35 | offval2 7673 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘) − (𝐻‘𝑘)))) |
| 37 | fvexd 6873 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((invg‘𝐺)‘(𝐻‘𝑘)) ∈ V) | |
| 38 | 12 | feqmptd 6929 | . . . . . 6 ⊢ (𝜑 → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘𝑥))) |
| 39 | fveq2 6858 | . . . . . 6 ⊢ (𝑥 = (𝐻‘𝑘) → ((invg‘𝐺)‘𝑥) = ((invg‘𝐺)‘(𝐻‘𝑘))) | |
| 40 | 30, 35, 38, 39 | fmptco 7101 | . . . . 5 ⊢ (𝜑 → ((invg‘𝐺) ∘ 𝐻) = (𝑘 ∈ 𝐴 ↦ ((invg‘𝐺)‘(𝐻‘𝑘)))) |
| 41 | 7, 29, 37, 34, 40 | offval2 7673 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)) = (𝑘 ∈ 𝐴 ↦ ((𝐹‘𝑘)(+g‘𝐺)((invg‘𝐺)‘(𝐻‘𝑘))))) |
| 42 | 33, 36, 41 | 3eqtr4d 2774 | . . 3 ⊢ (𝜑 → (𝐹 ∘f − 𝐻) = (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻))) |
| 43 | 42 | oveq2d 7403 | . 2 ⊢ (𝜑 → (𝐺 tsums (𝐹 ∘f − 𝐻)) = (𝐺 tsums (𝐹 ∘f (+g‘𝐺)((invg‘𝐺) ∘ 𝐻)))) |
| 44 | 19, 28, 43 | 3eltr4d 2843 | 1 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐺 tsums (𝐹 ∘f − 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ↦ cmpt 5188 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 Basecbs 17179 +gcplusg 17220 Grpcgrp 18865 invgcminusg 18866 -gcsg 18867 CMndccmn 19710 TopSpctps 22819 TopMndctmd 23957 TopGrpctgp 23958 tsums ctsu 24013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-gsum 17405 df-topgen 17406 df-plusf 18566 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-fbas 21261 df-fg 21262 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-ntr 22907 df-nei 22985 df-cn 23114 df-cnp 23115 df-tx 23449 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-tmd 23959 df-tgp 23960 df-tsms 24014 |
| This theorem is referenced by: tgptsmscls 24037 |
| Copyright terms: Public domain | W3C validator |