MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istgp2 Structured version   Visualization version   GIF version

Theorem istgp2 24007
Description: A group with a topology is a topological group iff the subtraction operation is continuous. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tgpsubcn.2 𝐽 = (TopOpen‘𝐺)
tgpsubcn.3 = (-g𝐺)
Assertion
Ref Expression
istgp2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))

Proof of Theorem istgp2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpgrp 23994 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2 tgptps 23996 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
3 tgpsubcn.2 . . . 4 𝐽 = (TopOpen‘𝐺)
4 tgpsubcn.3 . . . 4 = (-g𝐺)
53, 4tgpsubcn 24006 . . 3 (𝐺 ∈ TopGrp → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
61, 2, 53jca 1128 . 2 (𝐺 ∈ TopGrp → (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
7 simp1 1136 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ Grp)
8 grpmnd 18855 . . . . 5 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
983ad2ant1 1133 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ Mnd)
10 simp2 1137 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopSp)
11 eqid 2733 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
12 eqid 2733 . . . . . . . 8 (+g𝐺) = (+g𝐺)
13 eqid 2733 . . . . . . . 8 (invg𝐺) = (invg𝐺)
1473ad2ant1 1133 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp)
15 simp2 1137 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
16 simp3 1138 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦 ∈ (Base‘𝐺))
1711, 12, 4, 13, 14, 15, 16grpsubinv 18927 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥 ((invg𝐺)‘𝑦)) = (𝑥(+g𝐺)𝑦))
1817mpoeq3dva 7429 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)))
19 eqid 2733 . . . . . . 7 (+𝑓𝐺) = (+𝑓𝐺)
2011, 12, 19plusffval 18556 . . . . . 6 (+𝑓𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦))
2118, 20eqtr4di 2786 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) = (+𝑓𝐺))
2211, 3istps 22850 . . . . . . 7 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝐺)))
2310, 22sylib 218 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
2423, 23cnmpt1st 23584 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2523, 23cnmpt2nd 23585 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2611, 13grpinvf 18901 . . . . . . . . . . 11 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
27263ad2ant1 1133 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2827feqmptd 6896 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
29 eqid 2733 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
3011, 4, 13, 29grpinvval2 18938 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = ((0g𝐺) 𝑥))
317, 30sylan 580 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = ((0g𝐺) 𝑥))
3231mpteq2dva 5186 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) = (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)))
3328, 32eqtrd 2768 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)))
3411, 29grpidcl 18880 . . . . . . . . . . 11 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
35343ad2ant1 1133 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (0g𝐺) ∈ (Base‘𝐺))
3623, 23, 35cnmptc 23578 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ (0g𝐺)) ∈ (𝐽 Cn 𝐽))
3723cnmptid 23577 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
38 simp3 1138 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3923, 36, 37, 38cnmpt12f 23582 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)) ∈ (𝐽 Cn 𝐽))
4033, 39eqeltrd 2833 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) ∈ (𝐽 Cn 𝐽))
4123, 23, 25, 40cnmpt21f 23588 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4223, 23, 24, 41, 38cnmpt22f 23591 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4321, 42eqeltrrd 2834 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4419, 3istmd 23990 . . . 4 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
459, 10, 43, 44syl3anbrc 1344 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopMnd)
463, 13istgp 23993 . . 3 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ (𝐽 Cn 𝐽)))
477, 45, 40, 46syl3anbrc 1344 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopGrp)
486, 47impbii 209 1 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1541  wcel 2113  cmpt 5174  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354  Basecbs 17122  +gcplusg 17163  TopOpenctopn 17327  0gc0g 17345  +𝑓cplusf 18547  Mndcmnd 18644  Grpcgrp 18848  invgcminusg 18849  -gcsg 18850  TopOnctopon 22826  TopSpctps 22848   Cn ccn 23140   ×t ctx 23476  TopMndctmd 23986  TopGrpctgp 23987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-0g 17347  df-topgen 17349  df-plusf 18549  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cn 23143  df-cnp 23144  df-tx 23478  df-tmd 23988  df-tgp 23989
This theorem is referenced by:  distgp  24015  indistgp  24016  qustgplem  24037  ngptgp  24552  cnfldtgp  24788
  Copyright terms: Public domain W3C validator