Step | Hyp | Ref
| Expression |
1 | | tgpgrp 23137 |
. . 3
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
2 | | tgptps 23139 |
. . 3
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) |
3 | | tgpsubcn.2 |
. . . 4
⊢ 𝐽 = (TopOpen‘𝐺) |
4 | | tgpsubcn.3 |
. . . 4
⊢ − =
(-g‘𝐺) |
5 | 3, 4 | tgpsubcn 23149 |
. . 3
⊢ (𝐺 ∈ TopGrp → − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) |
6 | 1, 2, 5 | 3jca 1126 |
. 2
⊢ (𝐺 ∈ TopGrp → (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽))) |
7 | | simp1 1134 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → 𝐺 ∈ Grp) |
8 | | grpmnd 18499 |
. . . . 5
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
9 | 8 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → 𝐺 ∈ Mnd) |
10 | | simp2 1135 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → 𝐺 ∈ TopSp) |
11 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
12 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
13 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) |
14 | 7 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp) |
15 | | simp2 1135 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺)) |
16 | | simp3 1136 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦 ∈ (Base‘𝐺)) |
17 | 11, 12, 4, 13, 14, 15, 16 | grpsubinv 18563 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥 −
((invg‘𝐺)‘𝑦)) = (𝑥(+g‘𝐺)𝑦)) |
18 | 17 | mpoeq3dva 7330 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 −
((invg‘𝐺)‘𝑦))) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦))) |
19 | | eqid 2738 |
. . . . . . 7
⊢
(+𝑓‘𝐺) = (+𝑓‘𝐺) |
20 | 11, 12, 19 | plusffval 18247 |
. . . . . 6
⊢
(+𝑓‘𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) |
21 | 18, 20 | eqtr4di 2797 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 −
((invg‘𝐺)‘𝑦))) = (+𝑓‘𝐺)) |
22 | 11, 3 | istps 21991 |
. . . . . . 7
⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈
(TopOn‘(Base‘𝐺))) |
23 | 10, 22 | sylib 217 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
24 | 23, 23 | cnmpt1st 22727 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
25 | 23, 23 | cnmpt2nd 22728 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
26 | 11, 13 | grpinvf 18541 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp →
(invg‘𝐺):(Base‘𝐺)⟶(Base‘𝐺)) |
27 | 26 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (invg‘𝐺):(Base‘𝐺)⟶(Base‘𝐺)) |
28 | 27 | feqmptd 6819 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (invg‘𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg‘𝐺)‘𝑥))) |
29 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0g‘𝐺) = (0g‘𝐺) |
30 | 11, 4, 13, 29 | grpinvval2 18573 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) →
((invg‘𝐺)‘𝑥) = ((0g‘𝐺) − 𝑥)) |
31 | 7, 30 | sylan 579 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘𝑥) = ((0g‘𝐺) − 𝑥)) |
32 | 31 | mpteq2dva 5170 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ ((invg‘𝐺)‘𝑥)) = (𝑥 ∈ (Base‘𝐺) ↦ ((0g‘𝐺) − 𝑥))) |
33 | 28, 32 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (invg‘𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((0g‘𝐺) − 𝑥))) |
34 | 11, 29 | grpidcl 18522 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (Base‘𝐺)) |
35 | 34 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (0g‘𝐺) ∈ (Base‘𝐺)) |
36 | 23, 23, 35 | cnmptc 22721 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ (0g‘𝐺)) ∈ (𝐽 Cn 𝐽)) |
37 | 23 | cnmptid 22720 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
38 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
39 | 23, 36, 37, 38 | cnmpt12f 22725 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ ((0g‘𝐺) − 𝑥)) ∈ (𝐽 Cn 𝐽)) |
40 | 33, 39 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
41 | 23, 23, 25, 40 | cnmpt21f 22731 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg‘𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
42 | 23, 23, 24, 41, 38 | cnmpt22f 22734 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 −
((invg‘𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
43 | 21, 42 | eqeltrrd 2840 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → (+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
44 | 19, 3 | istmd 23133 |
. . . 4
⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧
(+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
45 | 9, 10, 43, 44 | syl3anbrc 1341 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → 𝐺 ∈ TopMnd) |
46 | 3, 13 | istgp 23136 |
. . 3
⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧
(invg‘𝐺)
∈ (𝐽 Cn 𝐽))) |
47 | 7, 45, 40, 46 | syl3anbrc 1341 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽)) → 𝐺 ∈ TopGrp) |
48 | 6, 47 | impbii 208 |
1
⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈
((𝐽 ×t
𝐽) Cn 𝐽))) |