MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istgp2 Structured version   Visualization version   GIF version

Theorem istgp2 24034
Description: A group with a topology is a topological group iff the subtraction operation is continuous. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tgpsubcn.2 𝐽 = (TopOpen‘𝐺)
tgpsubcn.3 = (-g𝐺)
Assertion
Ref Expression
istgp2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))

Proof of Theorem istgp2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpgrp 24021 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2 tgptps 24023 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
3 tgpsubcn.2 . . . 4 𝐽 = (TopOpen‘𝐺)
4 tgpsubcn.3 . . . 4 = (-g𝐺)
53, 4tgpsubcn 24033 . . 3 (𝐺 ∈ TopGrp → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
61, 2, 53jca 1128 . 2 (𝐺 ∈ TopGrp → (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
7 simp1 1136 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ Grp)
8 grpmnd 18928 . . . . 5 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
983ad2ant1 1133 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ Mnd)
10 simp2 1137 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopSp)
11 eqid 2736 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
12 eqid 2736 . . . . . . . 8 (+g𝐺) = (+g𝐺)
13 eqid 2736 . . . . . . . 8 (invg𝐺) = (invg𝐺)
1473ad2ant1 1133 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp)
15 simp2 1137 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
16 simp3 1138 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦 ∈ (Base‘𝐺))
1711, 12, 4, 13, 14, 15, 16grpsubinv 19000 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥 ((invg𝐺)‘𝑦)) = (𝑥(+g𝐺)𝑦))
1817mpoeq3dva 7489 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)))
19 eqid 2736 . . . . . . 7 (+𝑓𝐺) = (+𝑓𝐺)
2011, 12, 19plusffval 18629 . . . . . 6 (+𝑓𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦))
2118, 20eqtr4di 2789 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) = (+𝑓𝐺))
2211, 3istps 22877 . . . . . . 7 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝐺)))
2310, 22sylib 218 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
2423, 23cnmpt1st 23611 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2523, 23cnmpt2nd 23612 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2611, 13grpinvf 18974 . . . . . . . . . . 11 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
27263ad2ant1 1133 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2827feqmptd 6952 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
29 eqid 2736 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
3011, 4, 13, 29grpinvval2 19011 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = ((0g𝐺) 𝑥))
317, 30sylan 580 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = ((0g𝐺) 𝑥))
3231mpteq2dva 5219 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) = (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)))
3328, 32eqtrd 2771 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)))
3411, 29grpidcl 18953 . . . . . . . . . . 11 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
35343ad2ant1 1133 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (0g𝐺) ∈ (Base‘𝐺))
3623, 23, 35cnmptc 23605 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ (0g𝐺)) ∈ (𝐽 Cn 𝐽))
3723cnmptid 23604 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
38 simp3 1138 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3923, 36, 37, 38cnmpt12f 23609 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)) ∈ (𝐽 Cn 𝐽))
4033, 39eqeltrd 2835 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) ∈ (𝐽 Cn 𝐽))
4123, 23, 25, 40cnmpt21f 23615 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4223, 23, 24, 41, 38cnmpt22f 23618 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4321, 42eqeltrrd 2836 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4419, 3istmd 24017 . . . 4 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
459, 10, 43, 44syl3anbrc 1344 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopMnd)
463, 13istgp 24020 . . 3 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ (𝐽 Cn 𝐽)))
477, 45, 40, 46syl3anbrc 1344 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopGrp)
486, 47impbii 209 1 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1540  wcel 2109  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  Basecbs 17233  +gcplusg 17276  TopOpenctopn 17440  0gc0g 17458  +𝑓cplusf 18620  Mndcmnd 18717  Grpcgrp 18921  invgcminusg 18922  -gcsg 18923  TopOnctopon 22853  TopSpctps 22875   Cn ccn 23167   ×t ctx 23503  TopMndctmd 24013  TopGrpctgp 24014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-0g 17460  df-topgen 17462  df-plusf 18622  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cn 23170  df-cnp 23171  df-tx 23505  df-tmd 24015  df-tgp 24016
This theorem is referenced by:  distgp  24042  indistgp  24043  qustgplem  24064  ngptgp  24580  cnfldtgp  24816
  Copyright terms: Public domain W3C validator