MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istgp2 Structured version   Visualization version   GIF version

Theorem istgp2 22696
Description: A group with a topology is a topological group iff the subtraction operation is continuous. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tgpsubcn.2 𝐽 = (TopOpen‘𝐺)
tgpsubcn.3 = (-g𝐺)
Assertion
Ref Expression
istgp2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))

Proof of Theorem istgp2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpgrp 22683 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2 tgptps 22685 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
3 tgpsubcn.2 . . . 4 𝐽 = (TopOpen‘𝐺)
4 tgpsubcn.3 . . . 4 = (-g𝐺)
53, 4tgpsubcn 22695 . . 3 (𝐺 ∈ TopGrp → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
61, 2, 53jca 1125 . 2 (𝐺 ∈ TopGrp → (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
7 simp1 1133 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ Grp)
8 grpmnd 18102 . . . . 5 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
983ad2ant1 1130 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ Mnd)
10 simp2 1134 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopSp)
11 eqid 2798 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
12 eqid 2798 . . . . . . . 8 (+g𝐺) = (+g𝐺)
13 eqid 2798 . . . . . . . 8 (invg𝐺) = (invg𝐺)
1473ad2ant1 1130 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp)
15 simp2 1134 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
16 simp3 1135 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦 ∈ (Base‘𝐺))
1711, 12, 4, 13, 14, 15, 16grpsubinv 18164 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥 ((invg𝐺)‘𝑦)) = (𝑥(+g𝐺)𝑦))
1817mpoeq3dva 7210 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)))
19 eqid 2798 . . . . . . 7 (+𝑓𝐺) = (+𝑓𝐺)
2011, 12, 19plusffval 17850 . . . . . 6 (+𝑓𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦))
2118, 20eqtr4di 2851 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) = (+𝑓𝐺))
2211, 3istps 21539 . . . . . . 7 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝐺)))
2310, 22sylib 221 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
2423, 23cnmpt1st 22273 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2523, 23cnmpt2nd 22274 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2611, 13grpinvf 18142 . . . . . . . . . . 11 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
27263ad2ant1 1130 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2827feqmptd 6708 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
29 eqid 2798 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
3011, 4, 13, 29grpinvval2 18174 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = ((0g𝐺) 𝑥))
317, 30sylan 583 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = ((0g𝐺) 𝑥))
3231mpteq2dva 5125 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) = (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)))
3328, 32eqtrd 2833 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)))
3411, 29grpidcl 18123 . . . . . . . . . . 11 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
35343ad2ant1 1130 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (0g𝐺) ∈ (Base‘𝐺))
3623, 23, 35cnmptc 22267 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ (0g𝐺)) ∈ (𝐽 Cn 𝐽))
3723cnmptid 22266 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
38 simp3 1135 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3923, 36, 37, 38cnmpt12f 22271 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)) ∈ (𝐽 Cn 𝐽))
4033, 39eqeltrd 2890 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) ∈ (𝐽 Cn 𝐽))
4123, 23, 25, 40cnmpt21f 22277 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4223, 23, 24, 41, 38cnmpt22f 22280 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4321, 42eqeltrrd 2891 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4419, 3istmd 22679 . . . 4 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
459, 10, 43, 44syl3anbrc 1340 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopMnd)
463, 13istgp 22682 . . 3 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ (𝐽 Cn 𝐽)))
477, 45, 40, 46syl3anbrc 1340 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopGrp)
486, 47impbii 212 1 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  w3a 1084   = wceq 1538  wcel 2111  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  Basecbs 16475  +gcplusg 16557  TopOpenctopn 16687  0gc0g 16705  +𝑓cplusf 17841  Mndcmnd 17903  Grpcgrp 18095  invgcminusg 18096  -gcsg 18097  TopOnctopon 21515  TopSpctps 21537   Cn ccn 21829   ×t ctx 22165  TopMndctmd 22675  TopGrpctgp 22676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-0g 16707  df-topgen 16709  df-plusf 17843  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-tx 22167  df-tmd 22677  df-tgp 22678
This theorem is referenced by:  distgp  22704  indistgp  22705  qustgplem  22726  ngptgp  23242  cnfldtgp  23474
  Copyright terms: Public domain W3C validator