MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptsmscld Structured version   Visualization version   GIF version

Theorem tgptsmscld 23048
Description: The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
tgptsmscls.b 𝐵 = (Base‘𝐺)
tgptsmscls.j 𝐽 = (TopOpen‘𝐺)
tgptsmscls.1 (𝜑𝐺 ∈ CMnd)
tgptsmscls.2 (𝜑𝐺 ∈ TopGrp)
tgptsmscls.a (𝜑𝐴𝑉)
tgptsmscls.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
tgptsmscld (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))

Proof of Theorem tgptsmscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tgptsmscls.2 . . . . . 6 (𝜑𝐺 ∈ TopGrp)
2 tgptsmscls.j . . . . . . 7 𝐽 = (TopOpen‘𝐺)
3 tgptsmscls.b . . . . . . 7 𝐵 = (Base‘𝐺)
42, 3tgptopon 22979 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵))
51, 4syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 topontop 21810 . . . . 5 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
75, 6syl 17 . . . 4 (𝜑𝐽 ∈ Top)
8 0cld 21935 . . . 4 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
97, 8syl 17 . . 3 (𝜑 → ∅ ∈ (Clsd‘𝐽))
10 eleq1 2825 . . 3 ((𝐺 tsums 𝐹) = ∅ → ((𝐺 tsums 𝐹) ∈ (Clsd‘𝐽) ↔ ∅ ∈ (Clsd‘𝐽)))
119, 10syl5ibrcom 250 . 2 (𝜑 → ((𝐺 tsums 𝐹) = ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
12 n0 4261 . . 3 ((𝐺 tsums 𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹))
13 tgptsmscls.1 . . . . . . . 8 (𝜑𝐺 ∈ CMnd)
1413adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ CMnd)
151adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopGrp)
16 tgptsmscls.a . . . . . . . 8 (𝜑𝐴𝑉)
1716adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐴𝑉)
18 tgptsmscls.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
1918adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹:𝐴𝐵)
20 simpr 488 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ (𝐺 tsums 𝐹))
213, 2, 14, 15, 17, 19, 20tgptsmscls 23047 . . . . . 6 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑥}))
22 tgptps 22977 . . . . . . . . . . . 12 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
231, 22syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ TopSp)
243, 13, 23, 16, 18tsmscl 23032 . . . . . . . . . 10 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
25 toponuni 21811 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
265, 25syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
2724, 26sseqtrd 3941 . . . . . . . . 9 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐽)
2827sselda 3901 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 𝐽)
2928snssd 4722 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → {𝑥} ⊆ 𝐽)
30 eqid 2737 . . . . . . . 8 𝐽 = 𝐽
3130clscld 21944 . . . . . . 7 ((𝐽 ∈ Top ∧ {𝑥} ⊆ 𝐽) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽))
327, 29, 31syl2an2r 685 . . . . . 6 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽))
3321, 32eqeltrd 2838 . . . . 5 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))
3433ex 416 . . . 4 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
3534exlimdv 1941 . . 3 (𝜑 → (∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
3612, 35syl5bi 245 . 2 (𝜑 → ((𝐺 tsums 𝐹) ≠ ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
3711, 36pm2.61dne 3028 1 (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2110  wne 2940  wss 3866  c0 4237  {csn 4541   cuni 4819  wf 6376  cfv 6380  (class class class)co 7213  Basecbs 16760  TopOpenctopn 16926  CMndccmn 19170  Topctop 21790  TopOnctopon 21807  TopSpctps 21829  Clsdccld 21913  clsccl 21915  TopGrpctgp 22968   tsums ctsu 23023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-ec 8393  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-0g 16946  df-gsum 16947  df-topgen 16948  df-plusf 18113  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-eqg 18542  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-fbas 20360  df-fg 20361  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-cn 22124  df-cnp 22125  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-tmd 22969  df-tgp 22970  df-tsms 23024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator