| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgptsmscld | Structured version Visualization version GIF version | ||
| Description: The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgptsmscls.b | ⊢ 𝐵 = (Base‘𝐺) |
| tgptsmscls.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgptsmscls.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| tgptsmscls.2 | ⊢ (𝜑 → 𝐺 ∈ TopGrp) |
| tgptsmscls.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| tgptsmscls.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| tgptsmscld | ⊢ (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptsmscls.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TopGrp) | |
| 2 | tgptsmscls.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 3 | tgptsmscls.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 2, 3 | tgptopon 24004 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵)) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐵)) |
| 6 | topontop 22835 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 8 | 0cld 22960 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → ∅ ∈ (Clsd‘𝐽)) |
| 10 | eleq1 2816 | . . 3 ⊢ ((𝐺 tsums 𝐹) = ∅ → ((𝐺 tsums 𝐹) ∈ (Clsd‘𝐽) ↔ ∅ ∈ (Clsd‘𝐽))) | |
| 11 | 9, 10 | syl5ibrcom 247 | . 2 ⊢ (𝜑 → ((𝐺 tsums 𝐹) = ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
| 12 | n0 4312 | . . 3 ⊢ ((𝐺 tsums 𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) | |
| 13 | tgptsmscls.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ CMnd) |
| 15 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopGrp) |
| 16 | tgptsmscls.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐴 ∈ 𝑉) |
| 18 | tgptsmscls.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 19 | 18 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹:𝐴⟶𝐵) |
| 20 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ (𝐺 tsums 𝐹)) | |
| 21 | 3, 2, 14, 15, 17, 19, 20 | tgptsmscls 24072 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑥})) |
| 22 | tgptps 24002 | . . . . . . . . . . . 12 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | |
| 23 | 1, 22 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ TopSp) |
| 24 | 3, 13, 23, 16, 18 | tsmscl 24057 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) |
| 25 | toponuni 22836 | . . . . . . . . . . 11 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 26 | 5, 25 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 = ∪ 𝐽) |
| 27 | 24, 26 | sseqtrd 3980 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ ∪ 𝐽) |
| 28 | 27 | sselda 3943 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ ∪ 𝐽) |
| 29 | 28 | snssd 4769 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → {𝑥} ⊆ ∪ 𝐽) |
| 30 | eqid 2729 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 31 | 30 | clscld 22969 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ {𝑥} ⊆ ∪ 𝐽) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽)) |
| 32 | 7, 29, 31 | syl2an2r 685 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽)) |
| 33 | 21, 32 | eqeltrd 2828 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) |
| 34 | 33 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
| 35 | 34 | exlimdv 1933 | . . 3 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
| 36 | 12, 35 | biimtrid 242 | . 2 ⊢ (𝜑 → ((𝐺 tsums 𝐹) ≠ ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
| 37 | 11, 36 | pm2.61dne 3011 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3911 ∅c0 4292 {csn 4585 ∪ cuni 4867 ⟶wf 6496 ‘cfv 6500 (class class class)co 7370 Basecbs 17157 TopOpenctopn 17362 CMndccmn 19696 Topctop 22815 TopOnctopon 22832 TopSpctps 22854 Clsdccld 22938 clsccl 22940 TopGrpctgp 23993 tsums ctsu 24048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-of 7634 df-om 7824 df-1st 7948 df-2nd 7949 df-supp 8118 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-er 8649 df-ec 8651 df-map 8779 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-fsupp 9290 df-oi 9440 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-n0 12422 df-z 12509 df-uz 12773 df-fz 13448 df-fzo 13595 df-seq 13946 df-hash 14275 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-0g 17382 df-gsum 17383 df-topgen 17384 df-plusf 18550 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-mhm 18694 df-submnd 18695 df-grp 18852 df-minusg 18853 df-sbg 18854 df-subg 19039 df-eqg 19041 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-fbas 21295 df-fg 21296 df-top 22816 df-topon 22833 df-topsp 22855 df-bases 22868 df-cld 22941 df-ntr 22942 df-cls 22943 df-nei 23020 df-cn 23149 df-cnp 23150 df-tx 23484 df-hmeo 23677 df-fil 23768 df-fm 23860 df-flim 23861 df-flf 23862 df-tmd 23994 df-tgp 23995 df-tsms 24049 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |