Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgptsmscld | Structured version Visualization version GIF version |
Description: The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
tgptsmscls.b | ⊢ 𝐵 = (Base‘𝐺) |
tgptsmscls.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgptsmscls.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tgptsmscls.2 | ⊢ (𝜑 → 𝐺 ∈ TopGrp) |
tgptsmscls.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
tgptsmscls.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
tgptsmscld | ⊢ (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgptsmscls.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TopGrp) | |
2 | tgptsmscls.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | tgptsmscls.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 2, 3 | tgptopon 22979 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐵)) |
6 | topontop 21810 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
8 | 0cld 21935 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → ∅ ∈ (Clsd‘𝐽)) |
10 | eleq1 2825 | . . 3 ⊢ ((𝐺 tsums 𝐹) = ∅ → ((𝐺 tsums 𝐹) ∈ (Clsd‘𝐽) ↔ ∅ ∈ (Clsd‘𝐽))) | |
11 | 9, 10 | syl5ibrcom 250 | . 2 ⊢ (𝜑 → ((𝐺 tsums 𝐹) = ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
12 | n0 4261 | . . 3 ⊢ ((𝐺 tsums 𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) | |
13 | tgptsmscls.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
14 | 13 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ CMnd) |
15 | 1 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopGrp) |
16 | tgptsmscls.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
17 | 16 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐴 ∈ 𝑉) |
18 | tgptsmscls.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
19 | 18 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹:𝐴⟶𝐵) |
20 | simpr 488 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ (𝐺 tsums 𝐹)) | |
21 | 3, 2, 14, 15, 17, 19, 20 | tgptsmscls 23047 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑥})) |
22 | tgptps 22977 | . . . . . . . . . . . 12 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | |
23 | 1, 22 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ TopSp) |
24 | 3, 13, 23, 16, 18 | tsmscl 23032 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) |
25 | toponuni 21811 | . . . . . . . . . . 11 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
26 | 5, 25 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 = ∪ 𝐽) |
27 | 24, 26 | sseqtrd 3941 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ ∪ 𝐽) |
28 | 27 | sselda 3901 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ ∪ 𝐽) |
29 | 28 | snssd 4722 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → {𝑥} ⊆ ∪ 𝐽) |
30 | eqid 2737 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
31 | 30 | clscld 21944 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ {𝑥} ⊆ ∪ 𝐽) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽)) |
32 | 7, 29, 31 | syl2an2r 685 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽)) |
33 | 21, 32 | eqeltrd 2838 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) |
34 | 33 | ex 416 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
35 | 34 | exlimdv 1941 | . . 3 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
36 | 12, 35 | syl5bi 245 | . 2 ⊢ (𝜑 → ((𝐺 tsums 𝐹) ≠ ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
37 | 11, 36 | pm2.61dne 3028 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2110 ≠ wne 2940 ⊆ wss 3866 ∅c0 4237 {csn 4541 ∪ cuni 4819 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 TopOpenctopn 16926 CMndccmn 19170 Topctop 21790 TopOnctopon 21807 TopSpctps 21829 Clsdccld 21913 clsccl 21915 TopGrpctgp 22968 tsums ctsu 23023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-ec 8393 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-seq 13575 df-hash 13897 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-0g 16946 df-gsum 16947 df-topgen 16948 df-plusf 18113 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-eqg 18542 df-ghm 18620 df-cntz 18711 df-cmn 19172 df-abl 19173 df-fbas 20360 df-fg 20361 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cld 21916 df-ntr 21917 df-cls 21918 df-nei 21995 df-cn 22124 df-cnp 22125 df-tx 22459 df-hmeo 22652 df-fil 22743 df-fm 22835 df-flim 22836 df-flf 22837 df-tmd 22969 df-tgp 22970 df-tsms 23024 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |