MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptsmscld Structured version   Visualization version   GIF version

Theorem tgptsmscld 24094
Description: The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
tgptsmscls.b 𝐵 = (Base‘𝐺)
tgptsmscls.j 𝐽 = (TopOpen‘𝐺)
tgptsmscls.1 (𝜑𝐺 ∈ CMnd)
tgptsmscls.2 (𝜑𝐺 ∈ TopGrp)
tgptsmscls.a (𝜑𝐴𝑉)
tgptsmscls.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
tgptsmscld (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))

Proof of Theorem tgptsmscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tgptsmscls.2 . . . . . 6 (𝜑𝐺 ∈ TopGrp)
2 tgptsmscls.j . . . . . . 7 𝐽 = (TopOpen‘𝐺)
3 tgptsmscls.b . . . . . . 7 𝐵 = (Base‘𝐺)
42, 3tgptopon 24025 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵))
51, 4syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 topontop 22856 . . . . 5 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
75, 6syl 17 . . . 4 (𝜑𝐽 ∈ Top)
8 0cld 22981 . . . 4 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
97, 8syl 17 . . 3 (𝜑 → ∅ ∈ (Clsd‘𝐽))
10 eleq1 2823 . . 3 ((𝐺 tsums 𝐹) = ∅ → ((𝐺 tsums 𝐹) ∈ (Clsd‘𝐽) ↔ ∅ ∈ (Clsd‘𝐽)))
119, 10syl5ibrcom 247 . 2 (𝜑 → ((𝐺 tsums 𝐹) = ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
12 n0 4333 . . 3 ((𝐺 tsums 𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹))
13 tgptsmscls.1 . . . . . . . 8 (𝜑𝐺 ∈ CMnd)
1413adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ CMnd)
151adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopGrp)
16 tgptsmscls.a . . . . . . . 8 (𝜑𝐴𝑉)
1716adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐴𝑉)
18 tgptsmscls.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
1918adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹:𝐴𝐵)
20 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ (𝐺 tsums 𝐹))
213, 2, 14, 15, 17, 19, 20tgptsmscls 24093 . . . . . 6 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑥}))
22 tgptps 24023 . . . . . . . . . . . 12 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
231, 22syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ TopSp)
243, 13, 23, 16, 18tsmscl 24078 . . . . . . . . . 10 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
25 toponuni 22857 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
265, 25syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
2724, 26sseqtrd 4000 . . . . . . . . 9 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐽)
2827sselda 3963 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 𝐽)
2928snssd 4790 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → {𝑥} ⊆ 𝐽)
30 eqid 2736 . . . . . . . 8 𝐽 = 𝐽
3130clscld 22990 . . . . . . 7 ((𝐽 ∈ Top ∧ {𝑥} ⊆ 𝐽) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽))
327, 29, 31syl2an2r 685 . . . . . 6 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽))
3321, 32eqeltrd 2835 . . . . 5 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))
3433ex 412 . . . 4 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
3534exlimdv 1933 . . 3 (𝜑 → (∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
3612, 35biimtrid 242 . 2 (𝜑 → ((𝐺 tsums 𝐹) ≠ ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
3711, 36pm2.61dne 3019 1 (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2933  wss 3931  c0 4313  {csn 4606   cuni 4888  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  TopOpenctopn 17440  CMndccmn 19766  Topctop 22836  TopOnctopon 22853  TopSpctps 22875  Clsdccld 22959  clsccl 22961  TopGrpctgp 24014   tsums ctsu 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-ec 8726  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-topgen 17462  df-plusf 18622  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-eqg 19113  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-cn 23170  df-cnp 23171  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-tmd 24015  df-tgp 24016  df-tsms 24070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator