| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgptsmscld | Structured version Visualization version GIF version | ||
| Description: The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgptsmscls.b | ⊢ 𝐵 = (Base‘𝐺) |
| tgptsmscls.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgptsmscls.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| tgptsmscls.2 | ⊢ (𝜑 → 𝐺 ∈ TopGrp) |
| tgptsmscls.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| tgptsmscls.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| tgptsmscld | ⊢ (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptsmscls.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TopGrp) | |
| 2 | tgptsmscls.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 3 | tgptsmscls.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 2, 3 | tgptopon 23997 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵)) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐵)) |
| 6 | topontop 22828 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 8 | 0cld 22953 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → ∅ ∈ (Clsd‘𝐽)) |
| 10 | eleq1 2819 | . . 3 ⊢ ((𝐺 tsums 𝐹) = ∅ → ((𝐺 tsums 𝐹) ∈ (Clsd‘𝐽) ↔ ∅ ∈ (Clsd‘𝐽))) | |
| 11 | 9, 10 | syl5ibrcom 247 | . 2 ⊢ (𝜑 → ((𝐺 tsums 𝐹) = ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
| 12 | n0 4300 | . . 3 ⊢ ((𝐺 tsums 𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) | |
| 13 | tgptsmscls.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ CMnd) |
| 15 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopGrp) |
| 16 | tgptsmscls.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐴 ∈ 𝑉) |
| 18 | tgptsmscls.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 19 | 18 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹:𝐴⟶𝐵) |
| 20 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ (𝐺 tsums 𝐹)) | |
| 21 | 3, 2, 14, 15, 17, 19, 20 | tgptsmscls 24065 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑥})) |
| 22 | tgptps 23995 | . . . . . . . . . . . 12 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | |
| 23 | 1, 22 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ TopSp) |
| 24 | 3, 13, 23, 16, 18 | tsmscl 24050 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) |
| 25 | toponuni 22829 | . . . . . . . . . . 11 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
| 26 | 5, 25 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 = ∪ 𝐽) |
| 27 | 24, 26 | sseqtrd 3966 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ ∪ 𝐽) |
| 28 | 27 | sselda 3929 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ ∪ 𝐽) |
| 29 | 28 | snssd 4758 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → {𝑥} ⊆ ∪ 𝐽) |
| 30 | eqid 2731 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 31 | 30 | clscld 22962 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ {𝑥} ⊆ ∪ 𝐽) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽)) |
| 32 | 7, 29, 31 | syl2an2r 685 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽)) |
| 33 | 21, 32 | eqeltrd 2831 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) |
| 34 | 33 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
| 35 | 34 | exlimdv 1934 | . . 3 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
| 36 | 12, 35 | biimtrid 242 | . 2 ⊢ (𝜑 → ((𝐺 tsums 𝐹) ≠ ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
| 37 | 11, 36 | pm2.61dne 3014 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 ∅c0 4280 {csn 4573 ∪ cuni 4856 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 TopOpenctopn 17325 CMndccmn 19692 Topctop 22808 TopOnctopon 22825 TopSpctps 22847 Clsdccld 22931 clsccl 22933 TopGrpctgp 23986 tsums ctsu 24041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-ec 8624 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-gsum 17346 df-topgen 17347 df-plusf 18547 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-eqg 19038 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-fbas 21288 df-fg 21289 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-cn 23142 df-cnp 23143 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-tmd 23987 df-tgp 23988 df-tsms 24042 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |