Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgptsmscld | Structured version Visualization version GIF version |
Description: The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
tgptsmscls.b | ⊢ 𝐵 = (Base‘𝐺) |
tgptsmscls.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgptsmscls.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tgptsmscls.2 | ⊢ (𝜑 → 𝐺 ∈ TopGrp) |
tgptsmscls.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
tgptsmscls.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
tgptsmscld | ⊢ (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgptsmscls.2 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TopGrp) | |
2 | tgptsmscls.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | tgptsmscls.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 2, 3 | tgptopon 23233 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐵)) |
6 | topontop 22062 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) |
8 | 0cld 22189 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → ∅ ∈ (Clsd‘𝐽)) |
10 | eleq1 2826 | . . 3 ⊢ ((𝐺 tsums 𝐹) = ∅ → ((𝐺 tsums 𝐹) ∈ (Clsd‘𝐽) ↔ ∅ ∈ (Clsd‘𝐽))) | |
11 | 9, 10 | syl5ibrcom 246 | . 2 ⊢ (𝜑 → ((𝐺 tsums 𝐹) = ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
12 | n0 4280 | . . 3 ⊢ ((𝐺 tsums 𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) | |
13 | tgptsmscls.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
14 | 13 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ CMnd) |
15 | 1 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopGrp) |
16 | tgptsmscls.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
17 | 16 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐴 ∈ 𝑉) |
18 | tgptsmscls.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
19 | 18 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹:𝐴⟶𝐵) |
20 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ (𝐺 tsums 𝐹)) | |
21 | 3, 2, 14, 15, 17, 19, 20 | tgptsmscls 23301 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑥})) |
22 | tgptps 23231 | . . . . . . . . . . . 12 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | |
23 | 1, 22 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ TopSp) |
24 | 3, 13, 23, 16, 18 | tsmscl 23286 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) |
25 | toponuni 22063 | . . . . . . . . . . 11 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | |
26 | 5, 25 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 = ∪ 𝐽) |
27 | 24, 26 | sseqtrd 3961 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ ∪ 𝐽) |
28 | 27 | sselda 3921 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ ∪ 𝐽) |
29 | 28 | snssd 4742 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → {𝑥} ⊆ ∪ 𝐽) |
30 | eqid 2738 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
31 | 30 | clscld 22198 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ {𝑥} ⊆ ∪ 𝐽) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽)) |
32 | 7, 29, 31 | syl2an2r 682 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽)) |
33 | 21, 32 | eqeltrd 2839 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) |
34 | 33 | ex 413 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
35 | 34 | exlimdv 1936 | . . 3 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
36 | 12, 35 | syl5bi 241 | . 2 ⊢ (𝜑 → ((𝐺 tsums 𝐹) ≠ ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))) |
37 | 11, 36 | pm2.61dne 3031 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 ∅c0 4256 {csn 4561 ∪ cuni 4839 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 TopOpenctopn 17132 CMndccmn 19386 Topctop 22042 TopOnctopon 22059 TopSpctps 22081 Clsdccld 22167 clsccl 22169 TopGrpctgp 23222 tsums ctsu 23277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-ec 8500 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-gsum 17153 df-topgen 17154 df-plusf 18325 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-eqg 18754 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-fbas 20594 df-fg 20595 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-cn 22378 df-cnp 22379 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-tmd 23223 df-tgp 23224 df-tsms 23278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |