MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptsmscld Structured version   Visualization version   GIF version

Theorem tgptsmscld 22686
Description: The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
tgptsmscls.b 𝐵 = (Base‘𝐺)
tgptsmscls.j 𝐽 = (TopOpen‘𝐺)
tgptsmscls.1 (𝜑𝐺 ∈ CMnd)
tgptsmscls.2 (𝜑𝐺 ∈ TopGrp)
tgptsmscls.a (𝜑𝐴𝑉)
tgptsmscls.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
tgptsmscld (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))

Proof of Theorem tgptsmscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tgptsmscls.2 . . . . . 6 (𝜑𝐺 ∈ TopGrp)
2 tgptsmscls.j . . . . . . 7 𝐽 = (TopOpen‘𝐺)
3 tgptsmscls.b . . . . . . 7 𝐵 = (Base‘𝐺)
42, 3tgptopon 22618 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵))
51, 4syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 topontop 21449 . . . . 5 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
75, 6syl 17 . . . 4 (𝜑𝐽 ∈ Top)
8 0cld 21574 . . . 4 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
97, 8syl 17 . . 3 (𝜑 → ∅ ∈ (Clsd‘𝐽))
10 eleq1 2897 . . 3 ((𝐺 tsums 𝐹) = ∅ → ((𝐺 tsums 𝐹) ∈ (Clsd‘𝐽) ↔ ∅ ∈ (Clsd‘𝐽)))
119, 10syl5ibrcom 248 . 2 (𝜑 → ((𝐺 tsums 𝐹) = ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
12 n0 4307 . . 3 ((𝐺 tsums 𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹))
13 tgptsmscls.1 . . . . . . . 8 (𝜑𝐺 ∈ CMnd)
1413adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ CMnd)
151adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopGrp)
16 tgptsmscls.a . . . . . . . 8 (𝜑𝐴𝑉)
1716adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐴𝑉)
18 tgptsmscls.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
1918adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹:𝐴𝐵)
20 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ (𝐺 tsums 𝐹))
213, 2, 14, 15, 17, 19, 20tgptsmscls 22685 . . . . . 6 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑥}))
22 tgptps 22616 . . . . . . . . . . . 12 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
231, 22syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ TopSp)
243, 13, 23, 16, 18tsmscl 22670 . . . . . . . . . 10 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
25 toponuni 21450 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
265, 25syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
2724, 26sseqtrd 4004 . . . . . . . . 9 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐽)
2827sselda 3964 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 𝐽)
2928snssd 4734 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → {𝑥} ⊆ 𝐽)
30 eqid 2818 . . . . . . . 8 𝐽 = 𝐽
3130clscld 21583 . . . . . . 7 ((𝐽 ∈ Top ∧ {𝑥} ⊆ 𝐽) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽))
327, 29, 31syl2an2r 681 . . . . . 6 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽))
3321, 32eqeltrd 2910 . . . . 5 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))
3433ex 413 . . . 4 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
3534exlimdv 1925 . . 3 (𝜑 → (∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
3612, 35syl5bi 243 . 2 (𝜑 → ((𝐺 tsums 𝐹) ≠ ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
3711, 36pm2.61dne 3100 1 (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wex 1771  wcel 2105  wne 3013  wss 3933  c0 4288  {csn 4557   cuni 4830  wf 6344  cfv 6348  (class class class)co 7145  Basecbs 16471  TopOpenctopn 16683  CMndccmn 18835  Topctop 21429  TopOnctopon 21446  TopSpctps 21468  Clsdccld 21552  clsccl 21554  TopGrpctgp 22607   tsums ctsu 22661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-ec 8280  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-gsum 16704  df-topgen 16705  df-plusf 17839  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-eqg 18216  df-ghm 18294  df-cntz 18385  df-cmn 18837  df-abl 18838  df-fbas 20470  df-fg 20471  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-cn 21763  df-cnp 21764  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-tmd 22608  df-tgp 22609  df-tsms 22662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator