![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tlt3 | Structured version Visualization version GIF version |
Description: In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
tlt3.b | ⊢ 𝐵 = (Base‘𝐾) |
tlt3.l | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
tlt3 | ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ∨ 𝑌 < 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tlt3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2735 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | tlt3.l | . . . 4 ⊢ < = (lt‘𝐾) | |
4 | 1, 2, 3 | tlt2 32944 | . . 3 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ∨ 𝑌 < 𝑋)) |
5 | tospos 18478 | . . . . 5 ⊢ (𝐾 ∈ Toset → 𝐾 ∈ Poset) | |
6 | 1, 2, 3 | pleval2 18395 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
7 | orcom 870 | . . . . . 6 ⊢ ((𝑋 < 𝑌 ∨ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌 ∨ 𝑋 < 𝑌)) | |
8 | 6, 7 | bitrdi 287 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌 ∨ 𝑋 < 𝑌))) |
9 | 5, 8 | syl3an1 1162 | . . . 4 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌 ∨ 𝑋 < 𝑌))) |
10 | 9 | orbi1d 916 | . . 3 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑌 ∨ 𝑌 < 𝑋) ↔ ((𝑋 = 𝑌 ∨ 𝑋 < 𝑌) ∨ 𝑌 < 𝑋))) |
11 | 4, 10 | mpbid 232 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 = 𝑌 ∨ 𝑋 < 𝑌) ∨ 𝑌 < 𝑋)) |
12 | df-3or 1087 | . 2 ⊢ ((𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ∨ 𝑌 < 𝑋) ↔ ((𝑋 = 𝑌 ∨ 𝑋 < 𝑌) ∨ 𝑌 < 𝑋)) | |
13 | 11, 12 | sylibr 234 | 1 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ∨ 𝑌 < 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 lecple 17305 Posetcpo 18365 ltcplt 18366 Tosetctos 18474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-proset 18352 df-poset 18371 df-plt 18388 df-toset 18475 |
This theorem is referenced by: archirngz 33179 archiabllem1b 33182 archiabllem2b 33186 |
Copyright terms: Public domain | W3C validator |