Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tlt3 Structured version   Visualization version   GIF version

Theorem tlt3 32791
Description: In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
tlt3.b 𝐵 = (Base‘𝐾)
tlt3.l < = (lt‘𝐾)
Assertion
Ref Expression
tlt3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋))

Proof of Theorem tlt3
StepHypRef Expression
1 tlt3.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2725 . . . 4 (le‘𝐾) = (le‘𝐾)
3 tlt3.l . . . 4 < = (lt‘𝐾)
41, 2, 3tlt2 32790 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌𝑌 < 𝑋))
5 tospos 18420 . . . . 5 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
61, 2, 3pleval2 18337 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
7 orcom 868 . . . . . 6 ((𝑋 < 𝑌𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑋 < 𝑌))
86, 7bitrdi 286 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌𝑋 < 𝑌)))
95, 8syl3an1 1160 . . . 4 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌𝑋 < 𝑌)))
109orbi1d 914 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌 < 𝑋) ↔ ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋)))
114, 10mpbid 231 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋))
12 df-3or 1085 . 2 ((𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋) ↔ ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋))
1311, 12sylibr 233 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 845  w3o 1083  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5149  cfv 6549  Basecbs 17188  lecple 17248  Posetcpo 18307  ltcplt 18308  Tosetctos 18416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-proset 18295  df-poset 18313  df-plt 18330  df-toset 18417
This theorem is referenced by:  archirngz  32994  archiabllem1b  32997  archiabllem2b  33001
  Copyright terms: Public domain W3C validator