Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tlt3 Structured version   Visualization version   GIF version

Theorem tlt3 32950
Description: In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
tlt3.b 𝐵 = (Base‘𝐾)
tlt3.l < = (lt‘𝐾)
Assertion
Ref Expression
tlt3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋))

Proof of Theorem tlt3
StepHypRef Expression
1 tlt3.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2735 . . . 4 (le‘𝐾) = (le‘𝐾)
3 tlt3.l . . . 4 < = (lt‘𝐾)
41, 2, 3tlt2 32949 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌𝑌 < 𝑋))
5 tospos 18430 . . . . 5 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
61, 2, 3pleval2 18347 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
7 orcom 870 . . . . . 6 ((𝑋 < 𝑌𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑋 < 𝑌))
86, 7bitrdi 287 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌𝑋 < 𝑌)))
95, 8syl3an1 1163 . . . 4 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌𝑋 < 𝑌)))
109orbi1d 916 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌 < 𝑋) ↔ ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋)))
114, 10mpbid 232 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋))
12 df-3or 1087 . 2 ((𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋) ↔ ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋))
1311, 12sylibr 234 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  Basecbs 17228  lecple 17278  Posetcpo 18319  ltcplt 18320  Tosetctos 18426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-proset 18306  df-poset 18325  df-plt 18340  df-toset 18427
This theorem is referenced by:  archirngz  33187  archiabllem1b  33190  archiabllem2b  33194
  Copyright terms: Public domain W3C validator