Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tlt3 Structured version   Visualization version   GIF version

Theorem tlt3 32943
Description: In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
tlt3.b 𝐵 = (Base‘𝐾)
tlt3.l < = (lt‘𝐾)
Assertion
Ref Expression
tlt3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋))

Proof of Theorem tlt3
StepHypRef Expression
1 tlt3.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2740 . . . 4 (le‘𝐾) = (le‘𝐾)
3 tlt3.l . . . 4 < = (lt‘𝐾)
41, 2, 3tlt2 32942 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌𝑌 < 𝑋))
5 tospos 18490 . . . . 5 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
61, 2, 3pleval2 18407 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
7 orcom 869 . . . . . 6 ((𝑋 < 𝑌𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑋 < 𝑌))
86, 7bitrdi 287 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌𝑋 < 𝑌)))
95, 8syl3an1 1163 . . . 4 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌𝑋 < 𝑌)))
109orbi1d 915 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌 < 𝑋) ↔ ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋)))
114, 10mpbid 232 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋))
12 df-3or 1088 . 2 ((𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋) ↔ ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋))
1311, 12sylibr 234 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 846  w3o 1086  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  Posetcpo 18377  ltcplt 18378  Tosetctos 18486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-proset 18365  df-poset 18383  df-plt 18400  df-toset 18487
This theorem is referenced by:  archirngz  33169  archiabllem1b  33172  archiabllem2b  33176
  Copyright terms: Public domain W3C validator