![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tlt3 | Structured version Visualization version GIF version |
Description: In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
tlt3.b | β’ π΅ = (BaseβπΎ) |
tlt3.l | β’ < = (ltβπΎ) |
Ref | Expression |
---|---|
tlt3 | β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β (π = π β¨ π < π β¨ π < π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tlt3.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2724 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
3 | tlt3.l | . . . 4 β’ < = (ltβπΎ) | |
4 | 1, 2, 3 | tlt2 32609 | . . 3 β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β (π(leβπΎ)π β¨ π < π)) |
5 | tospos 18377 | . . . . 5 β’ (πΎ β Toset β πΎ β Poset) | |
6 | 1, 2, 3 | pleval2 18294 | . . . . . 6 β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β (π(leβπΎ)π β (π < π β¨ π = π))) |
7 | orcom 867 | . . . . . 6 β’ ((π < π β¨ π = π) β (π = π β¨ π < π)) | |
8 | 6, 7 | bitrdi 287 | . . . . 5 β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β (π(leβπΎ)π β (π = π β¨ π < π))) |
9 | 5, 8 | syl3an1 1160 | . . . 4 β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β (π(leβπΎ)π β (π = π β¨ π < π))) |
10 | 9 | orbi1d 913 | . . 3 β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β ((π(leβπΎ)π β¨ π < π) β ((π = π β¨ π < π) β¨ π < π))) |
11 | 4, 10 | mpbid 231 | . 2 β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β ((π = π β¨ π < π) β¨ π < π)) |
12 | df-3or 1085 | . 2 β’ ((π = π β¨ π < π β¨ π < π) β ((π = π β¨ π < π) β¨ π < π)) | |
13 | 11, 12 | sylibr 233 | 1 β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β (π = π β¨ π < π β¨ π < π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β¨ wo 844 β¨ w3o 1083 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5139 βcfv 6534 Basecbs 17145 lecple 17205 Posetcpo 18264 ltcplt 18265 Tosetctos 18373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6486 df-fun 6536 df-fv 6542 df-proset 18252 df-poset 18270 df-plt 18287 df-toset 18374 |
This theorem is referenced by: archirngz 32806 archiabllem1b 32809 archiabllem2b 32813 |
Copyright terms: Public domain | W3C validator |