Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tlt3 Structured version   Visualization version   GIF version

Theorem tlt3 30787
 Description: In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
tlt3.b 𝐵 = (Base‘𝐾)
tlt3.l < = (lt‘𝐾)
Assertion
Ref Expression
tlt3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋))

Proof of Theorem tlt3
StepHypRef Expression
1 tlt3.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2758 . . . 4 (le‘𝐾) = (le‘𝐾)
3 tlt3.l . . . 4 < = (lt‘𝐾)
41, 2, 3tlt2 30786 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌𝑌 < 𝑋))
5 tospos 30780 . . . . 5 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
61, 2, 3pleval2 17655 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
7 orcom 867 . . . . . 6 ((𝑋 < 𝑌𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑋 < 𝑌))
86, 7bitrdi 290 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌𝑋 < 𝑌)))
95, 8syl3an1 1160 . . . 4 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌𝑋 < 𝑌)))
109orbi1d 914 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌 < 𝑋) ↔ ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋)))
114, 10mpbid 235 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋))
12 df-3or 1085 . 2 ((𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋) ↔ ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋))
1311, 12sylibr 237 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∨ wo 844   ∨ w3o 1083   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   class class class wbr 5036  ‘cfv 6340  Basecbs 16555  lecple 16644  Posetcpo 17630  ltcplt 17631  Tosetctos 17723 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-iota 6299  df-fun 6342  df-fv 6348  df-proset 17618  df-poset 17636  df-plt 17648  df-toset 17724 This theorem is referenced by:  archirngz  30982  archiabllem1b  30985  archiabllem2b  30989
 Copyright terms: Public domain W3C validator