Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tlt3 | Structured version Visualization version GIF version |
Description: In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
tlt3.b | ⊢ 𝐵 = (Base‘𝐾) |
tlt3.l | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
tlt3 | ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ∨ 𝑌 < 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tlt3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2758 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | tlt3.l | . . . 4 ⊢ < = (lt‘𝐾) | |
4 | 1, 2, 3 | tlt2 30786 | . . 3 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ∨ 𝑌 < 𝑋)) |
5 | tospos 30780 | . . . . 5 ⊢ (𝐾 ∈ Toset → 𝐾 ∈ Poset) | |
6 | 1, 2, 3 | pleval2 17655 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
7 | orcom 867 | . . . . . 6 ⊢ ((𝑋 < 𝑌 ∨ 𝑋 = 𝑌) ↔ (𝑋 = 𝑌 ∨ 𝑋 < 𝑌)) | |
8 | 6, 7 | bitrdi 290 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌 ∨ 𝑋 < 𝑌))) |
9 | 5, 8 | syl3an1 1160 | . . . 4 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌 ∨ 𝑋 < 𝑌))) |
10 | 9 | orbi1d 914 | . . 3 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑌 ∨ 𝑌 < 𝑋) ↔ ((𝑋 = 𝑌 ∨ 𝑋 < 𝑌) ∨ 𝑌 < 𝑋))) |
11 | 4, 10 | mpbid 235 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 = 𝑌 ∨ 𝑋 < 𝑌) ∨ 𝑌 < 𝑋)) |
12 | df-3or 1085 | . 2 ⊢ ((𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ∨ 𝑌 < 𝑋) ↔ ((𝑋 = 𝑌 ∨ 𝑋 < 𝑌) ∨ 𝑌 < 𝑋)) | |
13 | 11, 12 | sylibr 237 | 1 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ∨ 𝑌 < 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∨ wo 844 ∨ w3o 1083 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 class class class wbr 5036 ‘cfv 6340 Basecbs 16555 lecple 16644 Posetcpo 17630 ltcplt 17631 Tosetctos 17723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-iota 6299 df-fun 6342 df-fv 6348 df-proset 17618 df-poset 17636 df-plt 17648 df-toset 17724 |
This theorem is referenced by: archirngz 30982 archiabllem1b 30985 archiabllem2b 30989 |
Copyright terms: Public domain | W3C validator |