![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tlt3 | Structured version Visualization version GIF version |
Description: In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
tlt3.b | β’ π΅ = (BaseβπΎ) |
tlt3.l | β’ < = (ltβπΎ) |
Ref | Expression |
---|---|
tlt3 | β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β (π = π β¨ π < π β¨ π < π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tlt3.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2732 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
3 | tlt3.l | . . . 4 β’ < = (ltβπΎ) | |
4 | 1, 2, 3 | tlt2 32126 | . . 3 β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β (π(leβπΎ)π β¨ π < π)) |
5 | tospos 18369 | . . . . 5 β’ (πΎ β Toset β πΎ β Poset) | |
6 | 1, 2, 3 | pleval2 18286 | . . . . . 6 β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β (π(leβπΎ)π β (π < π β¨ π = π))) |
7 | orcom 868 | . . . . . 6 β’ ((π < π β¨ π = π) β (π = π β¨ π < π)) | |
8 | 6, 7 | bitrdi 286 | . . . . 5 β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β (π(leβπΎ)π β (π = π β¨ π < π))) |
9 | 5, 8 | syl3an1 1163 | . . . 4 β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β (π(leβπΎ)π β (π = π β¨ π < π))) |
10 | 9 | orbi1d 915 | . . 3 β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β ((π(leβπΎ)π β¨ π < π) β ((π = π β¨ π < π) β¨ π < π))) |
11 | 4, 10 | mpbid 231 | . 2 β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β ((π = π β¨ π < π) β¨ π < π)) |
12 | df-3or 1088 | . 2 β’ ((π = π β¨ π < π β¨ π < π) β ((π = π β¨ π < π) β¨ π < π)) | |
13 | 11, 12 | sylibr 233 | 1 β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β (π = π β¨ π < π β¨ π < π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β¨ wo 845 β¨ w3o 1086 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5147 βcfv 6540 Basecbs 17140 lecple 17200 Posetcpo 18256 ltcplt 18257 Tosetctos 18365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-proset 18244 df-poset 18262 df-plt 18279 df-toset 18366 |
This theorem is referenced by: archirngz 32322 archiabllem1b 32325 archiabllem2b 32329 |
Copyright terms: Public domain | W3C validator |