Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tlt3 Structured version   Visualization version   GIF version

Theorem tlt3 31150
Description: In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
tlt3.b 𝐵 = (Base‘𝐾)
tlt3.l < = (lt‘𝐾)
Assertion
Ref Expression
tlt3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋))

Proof of Theorem tlt3
StepHypRef Expression
1 tlt3.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2738 . . . 4 (le‘𝐾) = (le‘𝐾)
3 tlt3.l . . . 4 < = (lt‘𝐾)
41, 2, 3tlt2 31149 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌𝑌 < 𝑋))
5 tospos 18053 . . . . 5 (𝐾 ∈ Toset → 𝐾 ∈ Poset)
61, 2, 3pleval2 17970 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
7 orcom 866 . . . . . 6 ((𝑋 < 𝑌𝑋 = 𝑌) ↔ (𝑋 = 𝑌𝑋 < 𝑌))
86, 7bitrdi 286 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌𝑋 < 𝑌)))
95, 8syl3an1 1161 . . . 4 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 = 𝑌𝑋 < 𝑌)))
109orbi1d 913 . . 3 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌 < 𝑋) ↔ ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋)))
114, 10mpbid 231 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋))
12 df-3or 1086 . 2 ((𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋) ↔ ((𝑋 = 𝑌𝑋 < 𝑌) ∨ 𝑌 < 𝑋))
1311, 12sylibr 233 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑋 < 𝑌𝑌 < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 843  w3o 1084  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895  Posetcpo 17940  ltcplt 17941  Tosetctos 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-proset 17928  df-poset 17946  df-plt 17963  df-toset 18050
This theorem is referenced by:  archirngz  31345  archiabllem1b  31348  archiabllem2b  31352
  Copyright terms: Public domain W3C validator