Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrpred3g Structured version   Visualization version   GIF version

Theorem dftrpred3g 33186
 Description: The transitive predecessors of 𝑋 are equal to the predecessors of 𝑋 together with their transitive predecessors. (Contributed by Scott Fenton, 26-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dftrpred3g ((𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋

Proof of Theorem dftrpred3g
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elun 4079 . . . . . 6 (𝑧 ∈ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) ↔ (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ 𝑧 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
2 predel 6137 . . . . . . . . . . 11 (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑧𝐴)
3 setlikespec 6141 . . . . . . . . . . . . . 14 ((𝑧𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
4 trpredpred 33181 . . . . . . . . . . . . . 14 (Pred(𝑅, 𝐴, 𝑧) ∈ V → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧))
53, 4syl 17 . . . . . . . . . . . . 13 ((𝑧𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧))
65expcom 417 . . . . . . . . . . . 12 (𝑅 Se 𝐴 → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)))
76adantl 485 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)))
82, 7syl5 34 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)))
98ancld 554 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧))))
10 trpredeq3 33175 . . . . . . . . . . . 12 (𝑦 = 𝑧 → TrPred(𝑅, 𝐴, 𝑦) = TrPred(𝑅, 𝐴, 𝑧))
1110sseq2d 3950 . . . . . . . . . . 11 (𝑦 = 𝑧 → (Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦) ↔ Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)))
1211rspcev 3574 . . . . . . . . . 10 ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)) → ∃𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦))
13 ssiun 4936 . . . . . . . . . 10 (∃𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))
1412, 13syl 17 . . . . . . . . 9 ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))
159, 14syl6 35 . . . . . . . 8 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
16 eliun 4888 . . . . . . . . 9 (𝑧 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) ↔ ∃𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦))
17 predel 6137 . . . . . . . . . . . 12 (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑦𝐴)
18 setlikespec 6141 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑦) ∈ V)
1918ancoms 462 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 Se 𝐴𝑦𝐴) → Pred(𝑅, 𝐴, 𝑦) ∈ V)
2019adantll 713 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → Pred(𝑅, 𝐴, 𝑦) ∈ V)
21 trpredss 33182 . . . . . . . . . . . . . . . . . . 19 (Pred(𝑅, 𝐴, 𝑦) ∈ V → TrPred(𝑅, 𝐴, 𝑦) ⊆ 𝐴)
2220, 21syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → TrPred(𝑅, 𝐴, 𝑦) ⊆ 𝐴)
2322sseld 3917 . . . . . . . . . . . . . . . . 17 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → 𝑧𝐴))
243expcom 417 . . . . . . . . . . . . . . . . . 18 (𝑅 Se 𝐴 → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2524ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2623, 25syld 47 . . . . . . . . . . . . . . . 16 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2726imp 410 . . . . . . . . . . . . . . 15 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) ∧ 𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦)) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
2827, 4syl 17 . . . . . . . . . . . . . 14 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) ∧ 𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦)) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧))
29 simpr 488 . . . . . . . . . . . . . . . 16 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
30 simplr 768 . . . . . . . . . . . . . . . 16 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → 𝑅 Se 𝐴)
31 trpredelss 33185 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑅 Se 𝐴) → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → TrPred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦)))
3229, 30, 31syl2anc 587 . . . . . . . . . . . . . . 15 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → TrPred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦)))
3332imp 410 . . . . . . . . . . . . . 14 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) ∧ 𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦)) → TrPred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦))
3428, 33sstrd 3928 . . . . . . . . . . . . 13 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) ∧ 𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦)) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦))
3534exp31 423 . . . . . . . . . . . 12 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦𝐴 → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦))))
3617, 35syl5 34 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦))))
3736reximdvai 3234 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → (∃𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → ∃𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦)))
3837, 13syl6 35 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → (∃𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
3916, 38syl5bi 245 . . . . . . . 8 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
4015, 39jaod 856 . . . . . . 7 ((𝑋𝐴𝑅 Se 𝐴) → ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ 𝑧 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
41 ssun4 4105 . . . . . . 7 (Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
4240, 41syl6 35 . . . . . 6 ((𝑋𝐴𝑅 Se 𝐴) → ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ 𝑧 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) → Pred(𝑅, 𝐴, 𝑧) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))))
431, 42syl5bi 245 . . . . 5 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) → Pred(𝑅, 𝐴, 𝑧) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))))
4443ralrimiv 3151 . . . 4 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑧 ∈ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))Pred(𝑅, 𝐴, 𝑧) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
45 ssun1 4102 . . . 4 Pred(𝑅, 𝐴, 𝑋) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))
4644, 45jctir 524 . . 3 ((𝑋𝐴𝑅 Se 𝐴) → (∀𝑧 ∈ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))Pred(𝑅, 𝐴, 𝑧) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))))
47 trpredmintr 33184 . . 3 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑧 ∈ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))Pred(𝑅, 𝐴, 𝑧) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))) → TrPred(𝑅, 𝐴, 𝑋) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
4846, 47mpdan 686 . 2 ((𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
49 setlikespec 6141 . . . 4 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
50 trpredpred 33181 . . . 4 (Pred(𝑅, 𝐴, 𝑋) ∈ V → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋))
5149, 50syl 17 . . 3 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋))
5251sseld 3917 . . . . . 6 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑦 ∈ TrPred(𝑅, 𝐴, 𝑋)))
53 trpredelss 33185 . . . . . 6 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ TrPred(𝑅, 𝐴, 𝑋) → TrPred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
5452, 53syld 47 . . . . 5 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) → TrPred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
5554ralrimiv 3151 . . . 4 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋))
56 iunss 4935 . . . 4 ( 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋) ↔ ∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋))
5755, 56sylibr 237 . . 3 ((𝑋𝐴𝑅 Se 𝐴) → 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋))
5851, 57unssd 4116 . 2 ((𝑋𝐴𝑅 Se 𝐴) → (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) ⊆ TrPred(𝑅, 𝐴, 𝑋))
5948, 58eqssd 3935 1 ((𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110  Vcvv 3444   ∪ cun 3882   ⊆ wss 3884  ∪ ciun 4884   Se wse 5480  Predcpred 6119  TrPredctrpred 33170 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-trpred 33171 This theorem is referenced by:  dftrpred4g  33187
 Copyright terms: Public domain W3C validator