Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrpred3g Structured version   Visualization version   GIF version

Theorem dftrpred3g 32683
Description: The transitive predecessors of 𝑋 are equal to the predecessors of 𝑋 together with their transitive predecessors. (Contributed by Scott Fenton, 26-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dftrpred3g ((𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋

Proof of Theorem dftrpred3g
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elun 4052 . . . . . 6 (𝑧 ∈ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) ↔ (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ 𝑧 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
2 predel 6047 . . . . . . . . . . 11 (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑧𝐴)
3 setlikespec 6051 . . . . . . . . . . . . . 14 ((𝑧𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
4 trpredpred 32678 . . . . . . . . . . . . . 14 (Pred(𝑅, 𝐴, 𝑧) ∈ V → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧))
53, 4syl 17 . . . . . . . . . . . . 13 ((𝑧𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧))
65expcom 414 . . . . . . . . . . . 12 (𝑅 Se 𝐴 → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)))
76adantl 482 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)))
82, 7syl5 34 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)))
98ancld 551 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧))))
10 trpredeq3 32672 . . . . . . . . . . . 12 (𝑦 = 𝑧 → TrPred(𝑅, 𝐴, 𝑦) = TrPred(𝑅, 𝐴, 𝑧))
1110sseq2d 3926 . . . . . . . . . . 11 (𝑦 = 𝑧 → (Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦) ↔ Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)))
1211rspcev 3561 . . . . . . . . . 10 ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)) → ∃𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦))
13 ssiun 4875 . . . . . . . . . 10 (∃𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))
1412, 13syl 17 . . . . . . . . 9 ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))
159, 14syl6 35 . . . . . . . 8 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
16 eliun 4835 . . . . . . . . 9 (𝑧 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) ↔ ∃𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦))
17 predel 6047 . . . . . . . . . . . 12 (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑦𝐴)
18 setlikespec 6051 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑦) ∈ V)
1918ancoms 459 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 Se 𝐴𝑦𝐴) → Pred(𝑅, 𝐴, 𝑦) ∈ V)
2019adantll 710 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → Pred(𝑅, 𝐴, 𝑦) ∈ V)
21 trpredss 32679 . . . . . . . . . . . . . . . . . . 19 (Pred(𝑅, 𝐴, 𝑦) ∈ V → TrPred(𝑅, 𝐴, 𝑦) ⊆ 𝐴)
2220, 21syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → TrPred(𝑅, 𝐴, 𝑦) ⊆ 𝐴)
2322sseld 3894 . . . . . . . . . . . . . . . . 17 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → 𝑧𝐴))
243expcom 414 . . . . . . . . . . . . . . . . . 18 (𝑅 Se 𝐴 → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2524ad2antlr 723 . . . . . . . . . . . . . . . . 17 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (𝑧𝐴 → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2623, 25syld 47 . . . . . . . . . . . . . . . 16 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ∈ V))
2726imp 407 . . . . . . . . . . . . . . 15 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) ∧ 𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦)) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
2827, 4syl 17 . . . . . . . . . . . . . 14 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) ∧ 𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦)) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧))
29 simpr 485 . . . . . . . . . . . . . . . 16 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
30 simplr 765 . . . . . . . . . . . . . . . 16 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → 𝑅 Se 𝐴)
31 trpredelss 32682 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑅 Se 𝐴) → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → TrPred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦)))
3229, 30, 31syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → TrPred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦)))
3332imp 407 . . . . . . . . . . . . . 14 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) ∧ 𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦)) → TrPred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦))
3428, 33sstrd 3905 . . . . . . . . . . . . 13 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) ∧ 𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦)) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦))
3534exp31 420 . . . . . . . . . . . 12 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦𝐴 → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦))))
3617, 35syl5 34 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) → (𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦))))
3736reximdvai 3237 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → (∃𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → ∃𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑦)))
3837, 13syl6 35 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → (∃𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)𝑧 ∈ TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
3916, 38syl5bi 243 . . . . . . . 8 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
4015, 39jaod 854 . . . . . . 7 ((𝑋𝐴𝑅 Se 𝐴) → ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ 𝑧 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
41 ssun4 4078 . . . . . . 7 (Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) → Pred(𝑅, 𝐴, 𝑧) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
4240, 41syl6 35 . . . . . 6 ((𝑋𝐴𝑅 Se 𝐴) → ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ 𝑧 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) → Pred(𝑅, 𝐴, 𝑧) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))))
431, 42syl5bi 243 . . . . 5 ((𝑋𝐴𝑅 Se 𝐴) → (𝑧 ∈ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) → Pred(𝑅, 𝐴, 𝑧) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))))
4443ralrimiv 3150 . . . 4 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑧 ∈ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))Pred(𝑅, 𝐴, 𝑧) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
45 ssun1 4075 . . . 4 Pred(𝑅, 𝐴, 𝑋) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))
4644, 45jctir 521 . . 3 ((𝑋𝐴𝑅 Se 𝐴) → (∀𝑧 ∈ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))Pred(𝑅, 𝐴, 𝑧) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))))
47 trpredmintr 32681 . . 3 (((𝑋𝐴𝑅 Se 𝐴) ∧ (∀𝑧 ∈ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))Pred(𝑅, 𝐴, 𝑧) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))) → TrPred(𝑅, 𝐴, 𝑋) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
4846, 47mpdan 683 . 2 ((𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) ⊆ (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
49 setlikespec 6051 . . . 4 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
50 trpredpred 32678 . . . 4 (Pred(𝑅, 𝐴, 𝑋) ∈ V → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋))
5149, 50syl 17 . . 3 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋))
5251sseld 3894 . . . . . 6 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑦 ∈ TrPred(𝑅, 𝐴, 𝑋)))
53 trpredelss 32682 . . . . . 6 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ TrPred(𝑅, 𝐴, 𝑋) → TrPred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
5452, 53syld 47 . . . . 5 ((𝑋𝐴𝑅 Se 𝐴) → (𝑦 ∈ Pred(𝑅, 𝐴, 𝑋) → TrPred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
5554ralrimiv 3150 . . . 4 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋))
56 iunss 4874 . . . 4 ( 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋) ↔ ∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋))
5755, 56sylibr 235 . . 3 ((𝑋𝐴𝑅 Se 𝐴) → 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦) ⊆ TrPred(𝑅, 𝐴, 𝑋))
5851, 57unssd 4089 . 2 ((𝑋𝐴𝑅 Se 𝐴) → (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) ⊆ TrPred(𝑅, 𝐴, 𝑋))
5948, 58eqssd 3912 1 ((𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 842   = wceq 1525  wcel 2083  wral 3107  wrex 3108  Vcvv 3440  cun 3863  wss 3865   ciun 4831   Se wse 5407  Predcpred 6029  TrPredctrpred 32667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-om 7444  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-trpred 32668
This theorem is referenced by:  dftrpred4g  32684
  Copyright terms: Public domain W3C validator