Step | Hyp | Ref
| Expression |
1 | | dfiin2g 4958 |
. . 3
⊢
(∀𝑦 ∈
𝐼 𝑆 ∈ 𝐶 → ∩
𝑦 ∈ 𝐼 𝑆 = ∩ {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆}) |
2 | 1 | 3ad2ant3 1133 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∩
𝑦 ∈ 𝐼 𝑆 = ∩ {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆}) |
3 | | simp1 1134 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → 𝐶 ∈ (Moore‘𝑋)) |
4 | | uniiunlem 4015 |
. . . . 5
⊢
(∀𝑦 ∈
𝐼 𝑆 ∈ 𝐶 → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ↔ {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ⊆ 𝐶)) |
5 | 4 | ibi 266 |
. . . 4
⊢
(∀𝑦 ∈
𝐼 𝑆 ∈ 𝐶 → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ⊆ 𝐶) |
6 | 5 | 3ad2ant3 1133 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ⊆ 𝐶) |
7 | | n0 4277 |
. . . . . 6
⊢ (𝐼 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝐼) |
8 | | nfra1 3142 |
. . . . . . . 8
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 |
9 | | nfre1 3234 |
. . . . . . . . . 10
⊢
Ⅎ𝑦∃𝑦 ∈ 𝐼 𝑠 = 𝑆 |
10 | 9 | nfab 2912 |
. . . . . . . . 9
⊢
Ⅎ𝑦{𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} |
11 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑦∅ |
12 | 10, 11 | nfne 3044 |
. . . . . . . 8
⊢
Ⅎ𝑦{𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅ |
13 | 8, 12 | nfim 1900 |
. . . . . . 7
⊢
Ⅎ𝑦(∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅) |
14 | | rsp 3129 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐼 𝑆 ∈ 𝐶 → (𝑦 ∈ 𝐼 → 𝑆 ∈ 𝐶)) |
15 | 14 | com12 32 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐼 → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → 𝑆 ∈ 𝐶)) |
16 | | elisset 2820 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝐶 → ∃𝑠 𝑠 = 𝑆) |
17 | | rspe 3232 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐼 ∧ ∃𝑠 𝑠 = 𝑆) → ∃𝑦 ∈ 𝐼 ∃𝑠 𝑠 = 𝑆) |
18 | 17 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐼 → (∃𝑠 𝑠 = 𝑆 → ∃𝑦 ∈ 𝐼 ∃𝑠 𝑠 = 𝑆)) |
19 | 16, 18 | syl5 34 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐼 → (𝑆 ∈ 𝐶 → ∃𝑦 ∈ 𝐼 ∃𝑠 𝑠 = 𝑆)) |
20 | | rexcom4 3179 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐼 ∃𝑠 𝑠 = 𝑆 ↔ ∃𝑠∃𝑦 ∈ 𝐼 𝑠 = 𝑆) |
21 | 19, 20 | syl6ib 250 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐼 → (𝑆 ∈ 𝐶 → ∃𝑠∃𝑦 ∈ 𝐼 𝑠 = 𝑆)) |
22 | 15, 21 | syld 47 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐼 → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∃𝑠∃𝑦 ∈ 𝐼 𝑠 = 𝑆)) |
23 | | abn0 4311 |
. . . . . . . 8
⊢ ({𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅ ↔ ∃𝑠∃𝑦 ∈ 𝐼 𝑠 = 𝑆) |
24 | 22, 23 | syl6ibr 251 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐼 → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅)) |
25 | 13, 24 | exlimi 2213 |
. . . . . 6
⊢
(∃𝑦 𝑦 ∈ 𝐼 → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅)) |
26 | 7, 25 | sylbi 216 |
. . . . 5
⊢ (𝐼 ≠ ∅ →
(∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅)) |
27 | 26 | imp 406 |
. . . 4
⊢ ((𝐼 ≠ ∅ ∧
∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅) |
28 | 27 | 3adant1 1128 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅) |
29 | | mreintcl 17221 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ⊆ 𝐶 ∧ {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅) → ∩ {𝑠
∣ ∃𝑦 ∈
𝐼 𝑠 = 𝑆} ∈ 𝐶) |
30 | 3, 6, 28, 29 | syl3anc 1369 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∩ {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ∈ 𝐶) |
31 | 2, 30 | eqeltrd 2839 |
1
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∩
𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) |