| Step | Hyp | Ref
| Expression |
| 1 | | dfiin2g 5013 |
. . 3
⊢
(∀𝑦 ∈
𝐼 𝑆 ∈ 𝐶 → ∩
𝑦 ∈ 𝐼 𝑆 = ∩ {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆}) |
| 2 | 1 | 3ad2ant3 1135 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∩
𝑦 ∈ 𝐼 𝑆 = ∩ {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆}) |
| 3 | | simp1 1136 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → 𝐶 ∈ (Moore‘𝑋)) |
| 4 | | uniiunlem 4067 |
. . . . 5
⊢
(∀𝑦 ∈
𝐼 𝑆 ∈ 𝐶 → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ↔ {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ⊆ 𝐶)) |
| 5 | 4 | ibi 267 |
. . . 4
⊢
(∀𝑦 ∈
𝐼 𝑆 ∈ 𝐶 → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ⊆ 𝐶) |
| 6 | 5 | 3ad2ant3 1135 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ⊆ 𝐶) |
| 7 | | n0 4333 |
. . . . . 6
⊢ (𝐼 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝐼) |
| 8 | | nfra1 3270 |
. . . . . . . 8
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 |
| 9 | | nfre1 3271 |
. . . . . . . . . 10
⊢
Ⅎ𝑦∃𝑦 ∈ 𝐼 𝑠 = 𝑆 |
| 10 | 9 | nfab 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑦{𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} |
| 11 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑦∅ |
| 12 | 10, 11 | nfne 3034 |
. . . . . . . 8
⊢
Ⅎ𝑦{𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅ |
| 13 | 8, 12 | nfim 1896 |
. . . . . . 7
⊢
Ⅎ𝑦(∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅) |
| 14 | | rsp 3234 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐼 𝑆 ∈ 𝐶 → (𝑦 ∈ 𝐼 → 𝑆 ∈ 𝐶)) |
| 15 | 14 | com12 32 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐼 → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → 𝑆 ∈ 𝐶)) |
| 16 | | elisset 2817 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝐶 → ∃𝑠 𝑠 = 𝑆) |
| 17 | | rspe 3236 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐼 ∧ ∃𝑠 𝑠 = 𝑆) → ∃𝑦 ∈ 𝐼 ∃𝑠 𝑠 = 𝑆) |
| 18 | 17 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐼 → (∃𝑠 𝑠 = 𝑆 → ∃𝑦 ∈ 𝐼 ∃𝑠 𝑠 = 𝑆)) |
| 19 | 16, 18 | syl5 34 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐼 → (𝑆 ∈ 𝐶 → ∃𝑦 ∈ 𝐼 ∃𝑠 𝑠 = 𝑆)) |
| 20 | | rexcom4 3273 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐼 ∃𝑠 𝑠 = 𝑆 ↔ ∃𝑠∃𝑦 ∈ 𝐼 𝑠 = 𝑆) |
| 21 | 19, 20 | imbitrdi 251 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐼 → (𝑆 ∈ 𝐶 → ∃𝑠∃𝑦 ∈ 𝐼 𝑠 = 𝑆)) |
| 22 | 15, 21 | syld 47 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐼 → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∃𝑠∃𝑦 ∈ 𝐼 𝑠 = 𝑆)) |
| 23 | | abn0 4365 |
. . . . . . . 8
⊢ ({𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅ ↔ ∃𝑠∃𝑦 ∈ 𝐼 𝑠 = 𝑆) |
| 24 | 22, 23 | imbitrrdi 252 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐼 → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅)) |
| 25 | 13, 24 | exlimi 2218 |
. . . . . 6
⊢
(∃𝑦 𝑦 ∈ 𝐼 → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅)) |
| 26 | 7, 25 | sylbi 217 |
. . . . 5
⊢ (𝐼 ≠ ∅ →
(∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅)) |
| 27 | 26 | imp 406 |
. . . 4
⊢ ((𝐼 ≠ ∅ ∧
∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅) |
| 28 | 27 | 3adant1 1130 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅) |
| 29 | | mreintcl 17612 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ⊆ 𝐶 ∧ {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ≠ ∅) → ∩ {𝑠
∣ ∃𝑦 ∈
𝐼 𝑠 = 𝑆} ∈ 𝐶) |
| 30 | 3, 6, 28, 29 | syl3anc 1373 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∩ {𝑠 ∣ ∃𝑦 ∈ 𝐼 𝑠 = 𝑆} ∈ 𝐶) |
| 31 | 2, 30 | eqeltrd 2835 |
1
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∩
𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) |