![]() |
Mathbox for Matthew House |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > weiunlem1 | Structured version Visualization version GIF version |
Description: Lemma for weiunpo 36460, weiunso 36461, weiunfr 36462, and weiunse 36463. (Contributed by Matthew House, 8-Sep-2025.) |
Ref | Expression |
---|---|
weiun.1 | ⊢ 𝐹 = (𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) |
weiun.2 | ⊢ 𝑇 = {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)))} |
Ref | Expression |
---|---|
weiunlem1 | ⊢ (𝐶𝑇𝐷 ↔ ((𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝐷 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝐶)𝑅(𝐹‘𝐷) ∨ ((𝐹‘𝐶) = (𝐹‘𝐷) ∧ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → 𝑦 = 𝐶) | |
2 | 1 | fveq2d 6918 | . . . 4 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (𝐹‘𝑦) = (𝐹‘𝐶)) |
3 | simpr 484 | . . . . 5 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → 𝑧 = 𝐷) | |
4 | 3 | fveq2d 6918 | . . . 4 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (𝐹‘𝑧) = (𝐹‘𝐷)) |
5 | 2, 4 | breq12d 5164 | . . 3 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ↔ (𝐹‘𝐶)𝑅(𝐹‘𝐷))) |
6 | 2, 4 | eqeq12d 2753 | . . . 4 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ (𝐹‘𝐶) = (𝐹‘𝐷))) |
7 | 2 | csbeq1d 3915 | . . . . 5 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → ⦋(𝐹‘𝑦) / 𝑥⦌𝑆 = ⦋(𝐹‘𝐶) / 𝑥⦌𝑆) |
8 | 1, 7, 3 | breq123d 5165 | . . . 4 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧 ↔ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷)) |
9 | 6, 8 | anbi12d 632 | . . 3 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧) ↔ ((𝐹‘𝐶) = (𝐹‘𝐷) ∧ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷))) |
10 | 5, 9 | orbi12d 919 | . 2 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)) ↔ ((𝐹‘𝐶)𝑅(𝐹‘𝐷) ∨ ((𝐹‘𝐶) = (𝐹‘𝐷) ∧ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷)))) |
11 | weiun.2 | . 2 ⊢ 𝑇 = {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)))} | |
12 | 10, 11 | brab2a 5786 | 1 ⊢ (𝐶𝑇𝐷 ↔ ((𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝐷 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝐶)𝑅(𝐹‘𝐷) ∨ ((𝐹‘𝐶) = (𝐹‘𝐷) ∧ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1539 ∈ wcel 2108 ∀wral 3061 {crab 3436 ⦋csb 3911 ∪ ciun 4999 class class class wbr 5151 {copab 5213 ↦ cmpt 5234 ‘cfv 6569 ℩crio 7394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-xp 5699 df-iota 6522 df-fv 6577 |
This theorem is referenced by: weiunpo 36460 weiunso 36461 weiunfr 36462 weiunse 36463 |
Copyright terms: Public domain | W3C validator |