| Mathbox for Matthew House |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > weiunlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for weiunpo 36400, weiunso 36401, weiunfr 36402, and weiunse 36403. (Contributed by Matthew House, 8-Sep-2025.) |
| Ref | Expression |
|---|---|
| weiun.1 | ⊢ 𝐹 = (𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) |
| weiun.2 | ⊢ 𝑇 = {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)))} |
| Ref | Expression |
|---|---|
| weiunlem1 | ⊢ (𝐶𝑇𝐷 ↔ ((𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝐷 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝐶)𝑅(𝐹‘𝐷) ∨ ((𝐹‘𝐶) = (𝐹‘𝐷) ∧ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → 𝑦 = 𝐶) | |
| 2 | 1 | fveq2d 6889 | . . . 4 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (𝐹‘𝑦) = (𝐹‘𝐶)) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → 𝑧 = 𝐷) | |
| 4 | 3 | fveq2d 6889 | . . . 4 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (𝐹‘𝑧) = (𝐹‘𝐷)) |
| 5 | 2, 4 | breq12d 5136 | . . 3 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ↔ (𝐹‘𝐶)𝑅(𝐹‘𝐷))) |
| 6 | 2, 4 | eqeq12d 2750 | . . . 4 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ (𝐹‘𝐶) = (𝐹‘𝐷))) |
| 7 | 2 | csbeq1d 3883 | . . . . 5 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → ⦋(𝐹‘𝑦) / 𝑥⦌𝑆 = ⦋(𝐹‘𝐶) / 𝑥⦌𝑆) |
| 8 | 1, 7, 3 | breq123d 5137 | . . . 4 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧 ↔ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷)) |
| 9 | 6, 8 | anbi12d 632 | . . 3 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧) ↔ ((𝐹‘𝐶) = (𝐹‘𝐷) ∧ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷))) |
| 10 | 5, 9 | orbi12d 918 | . 2 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)) ↔ ((𝐹‘𝐶)𝑅(𝐹‘𝐷) ∨ ((𝐹‘𝐶) = (𝐹‘𝐷) ∧ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷)))) |
| 11 | weiun.2 | . 2 ⊢ 𝑇 = {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)))} | |
| 12 | 10, 11 | brab2a 5759 | 1 ⊢ (𝐶𝑇𝐷 ↔ ((𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝐷 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝐶)𝑅(𝐹‘𝐷) ∨ ((𝐹‘𝐶) = (𝐹‘𝐷) ∧ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3419 ⦋csb 3879 ∪ ciun 4971 class class class wbr 5123 {copab 5185 ↦ cmpt 5205 ‘cfv 6540 ℩crio 7368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-xp 5671 df-iota 6493 df-fv 6548 |
| This theorem is referenced by: weiunpo 36400 weiunso 36401 weiunfr 36402 weiunse 36403 |
| Copyright terms: Public domain | W3C validator |