| Mathbox for Matthew House |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > weiunlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for weiunpo 36478, weiunso 36479, weiunfr 36480, and weiunse 36481. (Contributed by Matthew House, 8-Sep-2025.) |
| Ref | Expression |
|---|---|
| weiun.1 | ⊢ 𝐹 = (𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) |
| weiun.2 | ⊢ 𝑇 = {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)))} |
| Ref | Expression |
|---|---|
| weiunlem1 | ⊢ (𝐶𝑇𝐷 ↔ ((𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝐷 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝐶)𝑅(𝐹‘𝐷) ∨ ((𝐹‘𝐶) = (𝐹‘𝐷) ∧ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → 𝑦 = 𝐶) | |
| 2 | 1 | fveq2d 6821 | . . . 4 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (𝐹‘𝑦) = (𝐹‘𝐶)) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → 𝑧 = 𝐷) | |
| 4 | 3 | fveq2d 6821 | . . . 4 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (𝐹‘𝑧) = (𝐹‘𝐷)) |
| 5 | 2, 4 | breq12d 5102 | . . 3 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ↔ (𝐹‘𝐶)𝑅(𝐹‘𝐷))) |
| 6 | 2, 4 | eqeq12d 2746 | . . . 4 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ (𝐹‘𝐶) = (𝐹‘𝐷))) |
| 7 | 2 | csbeq1d 3852 | . . . . 5 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → ⦋(𝐹‘𝑦) / 𝑥⦌𝑆 = ⦋(𝐹‘𝐶) / 𝑥⦌𝑆) |
| 8 | 1, 7, 3 | breq123d 5103 | . . . 4 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧 ↔ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷)) |
| 9 | 6, 8 | anbi12d 632 | . . 3 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧) ↔ ((𝐹‘𝐶) = (𝐹‘𝐷) ∧ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷))) |
| 10 | 5, 9 | orbi12d 918 | . 2 ⊢ ((𝑦 = 𝐶 ∧ 𝑧 = 𝐷) → (((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)) ↔ ((𝐹‘𝐶)𝑅(𝐹‘𝐷) ∨ ((𝐹‘𝐶) = (𝐹‘𝐷) ∧ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷)))) |
| 11 | weiun.2 | . 2 ⊢ 𝑇 = {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)))} | |
| 12 | 10, 11 | brab2a 5707 | 1 ⊢ (𝐶𝑇𝐷 ↔ ((𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝐷 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝐶)𝑅(𝐹‘𝐷) ∨ ((𝐹‘𝐶) = (𝐹‘𝐷) ∧ 𝐶⦋(𝐹‘𝐶) / 𝑥⦌𝑆𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2110 ∀wral 3045 {crab 3393 ⦋csb 3848 ∪ ciun 4939 class class class wbr 5089 {copab 5151 ↦ cmpt 5170 ‘cfv 6477 ℩crio 7297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-xp 5620 df-iota 6433 df-fv 6485 |
| This theorem is referenced by: weiunpo 36478 weiunso 36479 weiunfr 36480 weiunse 36481 |
| Copyright terms: Public domain | W3C validator |