Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weiunlem1 Structured version   Visualization version   GIF version

Theorem weiunlem1 36475
Description: Lemma for weiunpo 36478, weiunso 36479, weiunfr 36480, and weiunse 36481. (Contributed by Matthew House, 8-Sep-2025.)
Hypotheses
Ref Expression
weiun.1 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
weiun.2 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
Assertion
Ref Expression
weiunlem1 (𝐶𝑇𝐷 ↔ ((𝐶 𝑥𝐴 𝐵𝐷 𝑥𝐴 𝐵) ∧ ((𝐹𝐶)𝑅(𝐹𝐷) ∨ ((𝐹𝐶) = (𝐹𝐷) ∧ 𝐶(𝐹𝐶) / 𝑥𝑆𝐷))))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑤,𝑥   𝑦,𝐴,𝑧,𝑥   𝑢,𝐵,𝑣,𝑤   𝑦,𝐵,𝑧   𝑦,𝐶,𝑧   𝑦,𝐷,𝑧   𝑦,𝐹,𝑧   𝑢,𝑅,𝑣,𝑤   𝑦,𝑅,𝑧   𝑦,𝑆,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑤,𝑣,𝑢)   𝐷(𝑥,𝑤,𝑣,𝑢)   𝑅(𝑥)   𝑆(𝑥,𝑤,𝑣,𝑢)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐹(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem weiunlem1
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑦 = 𝐶𝑧 = 𝐷) → 𝑦 = 𝐶)
21fveq2d 6821 . . . 4 ((𝑦 = 𝐶𝑧 = 𝐷) → (𝐹𝑦) = (𝐹𝐶))
3 simpr 484 . . . . 5 ((𝑦 = 𝐶𝑧 = 𝐷) → 𝑧 = 𝐷)
43fveq2d 6821 . . . 4 ((𝑦 = 𝐶𝑧 = 𝐷) → (𝐹𝑧) = (𝐹𝐷))
52, 4breq12d 5102 . . 3 ((𝑦 = 𝐶𝑧 = 𝐷) → ((𝐹𝑦)𝑅(𝐹𝑧) ↔ (𝐹𝐶)𝑅(𝐹𝐷)))
62, 4eqeq12d 2746 . . . 4 ((𝑦 = 𝐶𝑧 = 𝐷) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝐹𝐶) = (𝐹𝐷)))
72csbeq1d 3852 . . . . 5 ((𝑦 = 𝐶𝑧 = 𝐷) → (𝐹𝑦) / 𝑥𝑆 = (𝐹𝐶) / 𝑥𝑆)
81, 7, 3breq123d 5103 . . . 4 ((𝑦 = 𝐶𝑧 = 𝐷) → (𝑦(𝐹𝑦) / 𝑥𝑆𝑧𝐶(𝐹𝐶) / 𝑥𝑆𝐷))
96, 8anbi12d 632 . . 3 ((𝑦 = 𝐶𝑧 = 𝐷) → (((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧) ↔ ((𝐹𝐶) = (𝐹𝐷) ∧ 𝐶(𝐹𝐶) / 𝑥𝑆𝐷)))
105, 9orbi12d 918 . 2 ((𝑦 = 𝐶𝑧 = 𝐷) → (((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)) ↔ ((𝐹𝐶)𝑅(𝐹𝐷) ∨ ((𝐹𝐶) = (𝐹𝐷) ∧ 𝐶(𝐹𝐶) / 𝑥𝑆𝐷))))
11 weiun.2 . 2 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
1210, 11brab2a 5707 1 (𝐶𝑇𝐷 ↔ ((𝐶 𝑥𝐴 𝐵𝐷 𝑥𝐴 𝐵) ∧ ((𝐹𝐶)𝑅(𝐹𝐷) ∨ ((𝐹𝐶) = (𝐹𝐷) ∧ 𝐶(𝐹𝐶) / 𝑥𝑆𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1541  wcel 2110  wral 3045  {crab 3393  csb 3848   ciun 4939   class class class wbr 5089  {copab 5151  cmpt 5170  cfv 6477  crio 7297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-xp 5620  df-iota 6433  df-fv 6485
This theorem is referenced by:  weiunpo  36478  weiunso  36479  weiunfr  36480  weiunse  36481
  Copyright terms: Public domain W3C validator