Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weiunlem1 Structured version   Visualization version   GIF version

Theorem weiunlem1 36450
Description: Lemma for weiunpo 36453, weiunso 36454, weiunfr 36455, and weiunse 36456. (Contributed by Matthew House, 8-Sep-2025.)
Hypotheses
Ref Expression
weiun.1 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
weiun.2 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
Assertion
Ref Expression
weiunlem1 (𝐶𝑇𝐷 ↔ ((𝐶 𝑥𝐴 𝐵𝐷 𝑥𝐴 𝐵) ∧ ((𝐹𝐶)𝑅(𝐹𝐷) ∨ ((𝐹𝐶) = (𝐹𝐷) ∧ 𝐶(𝐹𝐶) / 𝑥𝑆𝐷))))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑤,𝑥   𝑦,𝐴,𝑧,𝑥   𝑢,𝐵,𝑣,𝑤   𝑦,𝐵,𝑧   𝑦,𝐶,𝑧   𝑦,𝐷,𝑧   𝑦,𝐹,𝑧   𝑢,𝑅,𝑣,𝑤   𝑦,𝑅,𝑧   𝑦,𝑆,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑤,𝑣,𝑢)   𝐷(𝑥,𝑤,𝑣,𝑢)   𝑅(𝑥)   𝑆(𝑥,𝑤,𝑣,𝑢)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐹(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem weiunlem1
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑦 = 𝐶𝑧 = 𝐷) → 𝑦 = 𝐶)
21fveq2d 6862 . . . 4 ((𝑦 = 𝐶𝑧 = 𝐷) → (𝐹𝑦) = (𝐹𝐶))
3 simpr 484 . . . . 5 ((𝑦 = 𝐶𝑧 = 𝐷) → 𝑧 = 𝐷)
43fveq2d 6862 . . . 4 ((𝑦 = 𝐶𝑧 = 𝐷) → (𝐹𝑧) = (𝐹𝐷))
52, 4breq12d 5120 . . 3 ((𝑦 = 𝐶𝑧 = 𝐷) → ((𝐹𝑦)𝑅(𝐹𝑧) ↔ (𝐹𝐶)𝑅(𝐹𝐷)))
62, 4eqeq12d 2745 . . . 4 ((𝑦 = 𝐶𝑧 = 𝐷) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝐹𝐶) = (𝐹𝐷)))
72csbeq1d 3866 . . . . 5 ((𝑦 = 𝐶𝑧 = 𝐷) → (𝐹𝑦) / 𝑥𝑆 = (𝐹𝐶) / 𝑥𝑆)
81, 7, 3breq123d 5121 . . . 4 ((𝑦 = 𝐶𝑧 = 𝐷) → (𝑦(𝐹𝑦) / 𝑥𝑆𝑧𝐶(𝐹𝐶) / 𝑥𝑆𝐷))
96, 8anbi12d 632 . . 3 ((𝑦 = 𝐶𝑧 = 𝐷) → (((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧) ↔ ((𝐹𝐶) = (𝐹𝐷) ∧ 𝐶(𝐹𝐶) / 𝑥𝑆𝐷)))
105, 9orbi12d 918 . 2 ((𝑦 = 𝐶𝑧 = 𝐷) → (((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)) ↔ ((𝐹𝐶)𝑅(𝐹𝐷) ∨ ((𝐹𝐶) = (𝐹𝐷) ∧ 𝐶(𝐹𝐶) / 𝑥𝑆𝐷))))
11 weiun.2 . 2 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
1210, 11brab2a 5732 1 (𝐶𝑇𝐷 ↔ ((𝐶 𝑥𝐴 𝐵𝐷 𝑥𝐴 𝐵) ∧ ((𝐹𝐶)𝑅(𝐹𝐷) ∨ ((𝐹𝐶) = (𝐹𝐷) ∧ 𝐶(𝐹𝐶) / 𝑥𝑆𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  {crab 3405  csb 3862   ciun 4955   class class class wbr 5107  {copab 5169  cmpt 5188  cfv 6511  crio 7343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-iota 6464  df-fv 6519
This theorem is referenced by:  weiunpo  36453  weiunso  36454  weiunfr  36455  weiunse  36456
  Copyright terms: Public domain W3C validator