Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weiunlem2 Structured version   Visualization version   GIF version

Theorem weiunlem2 36377
Description: Lemma for weiunpo 36378, weiunso 36379, and weiunse 36383. (Contributed by Matthew House, 23-Aug-2025.)
Hypothesis
Ref Expression
weiunlem2.1 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
Assertion
Ref Expression
weiunlem2 ((𝑅 We 𝐴𝑅 Se 𝐴) → (𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵 ∧ ∀𝑡 𝑥𝐴 𝐵𝑠𝐴 (𝑡𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑡))))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑤,𝑥   𝐴,𝑠,𝑡,𝑣,𝑤,𝑥   𝑢,𝐵   𝐵,𝑠,𝑡,𝑣,𝑤   𝐹,𝑠,𝑡   𝑢,𝑅   𝑅,𝑠,𝑡,𝑣,𝑤
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝐹(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem weiunlem2
StepHypRef Expression
1 weiunlem2.1 . . 3 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
21weiunlem1 36376 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → (𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑤 𝑥𝐴 𝐵𝑤(𝐹𝑤) / 𝑥𝐵 ∧ ∀𝑤 𝑥𝐴 𝐵𝑣𝐴 (𝑤𝑣 / 𝑥𝐵 → ¬ 𝑣𝑅(𝐹𝑤))))
3 biid 261 . . 3 (𝐹: 𝑥𝐴 𝐵𝐴𝐹: 𝑥𝐴 𝐵𝐴)
4 nfv 1913 . . . 4 𝑡 𝑤(𝐹𝑤) / 𝑥𝐵
5 nfmpt1 5277 . . . . . . . 8 𝑤(𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
61, 5nfcxfr 2902 . . . . . . 7 𝑤𝐹
7 nfcv 2904 . . . . . . 7 𝑤𝑡
86, 7nffv 6929 . . . . . 6 𝑤(𝐹𝑡)
9 nfcv 2904 . . . . . 6 𝑤𝐵
108, 9nfcsbw 3942 . . . . 5 𝑤(𝐹𝑡) / 𝑥𝐵
1110nfcri 2895 . . . 4 𝑤 𝑡(𝐹𝑡) / 𝑥𝐵
12 id 22 . . . . 5 (𝑤 = 𝑡𝑤 = 𝑡)
13 fveq2 6919 . . . . . 6 (𝑤 = 𝑡 → (𝐹𝑤) = (𝐹𝑡))
1413csbeq1d 3919 . . . . 5 (𝑤 = 𝑡(𝐹𝑤) / 𝑥𝐵 = (𝐹𝑡) / 𝑥𝐵)
1512, 14eleq12d 2832 . . . 4 (𝑤 = 𝑡 → (𝑤(𝐹𝑤) / 𝑥𝐵𝑡(𝐹𝑡) / 𝑥𝐵))
164, 11, 15cbvralw 3307 . . 3 (∀𝑤 𝑥𝐴 𝐵𝑤(𝐹𝑤) / 𝑥𝐵 ↔ ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵)
17 nfv 1913 . . . 4 𝑡𝑣𝐴 (𝑤𝑣 / 𝑥𝐵 → ¬ 𝑣𝑅(𝐹𝑤))
18 nfcv 2904 . . . . 5 𝑤𝐴
19 nfv 1913 . . . . . 6 𝑤 𝑡𝑠 / 𝑥𝐵
20 nfcv 2904 . . . . . . . 8 𝑤𝑠
21 nfcv 2904 . . . . . . . 8 𝑤𝑅
2220, 21, 8nfbr 5216 . . . . . . 7 𝑤 𝑠𝑅(𝐹𝑡)
2322nfn 1856 . . . . . 6 𝑤 ¬ 𝑠𝑅(𝐹𝑡)
2419, 23nfim 1895 . . . . 5 𝑤(𝑡𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑡))
2518, 24nfralw 3312 . . . 4 𝑤𝑠𝐴 (𝑡𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑡))
26 nfv 1913 . . . . . 6 𝑠(𝑤𝑣 / 𝑥𝐵 → ¬ 𝑣𝑅(𝐹𝑤))
27 nfv 1913 . . . . . . 7 𝑣 𝑤𝑠 / 𝑥𝐵
28 nfcv 2904 . . . . . . . . 9 𝑣𝑠
29 nfcv 2904 . . . . . . . . 9 𝑣𝑅
30 nfcv 2904 . . . . . . . . . . . 12 𝑣 𝑥𝐴 𝐵
31 nfra1 3285 . . . . . . . . . . . . 13 𝑣𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢
32 nfcv 2904 . . . . . . . . . . . . 13 𝑣{𝑥𝐴𝑤𝐵}
3331, 32nfriota 7414 . . . . . . . . . . . 12 𝑣(𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢)
3430, 33nfmpt 5276 . . . . . . . . . . 11 𝑣(𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
351, 34nfcxfr 2902 . . . . . . . . . 10 𝑣𝐹
36 nfcv 2904 . . . . . . . . . 10 𝑣𝑤
3735, 36nffv 6929 . . . . . . . . 9 𝑣(𝐹𝑤)
3828, 29, 37nfbr 5216 . . . . . . . 8 𝑣 𝑠𝑅(𝐹𝑤)
3938nfn 1856 . . . . . . 7 𝑣 ¬ 𝑠𝑅(𝐹𝑤)
4027, 39nfim 1895 . . . . . 6 𝑣(𝑤𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑤))
41 csbeq1 3918 . . . . . . . 8 (𝑣 = 𝑠𝑣 / 𝑥𝐵 = 𝑠 / 𝑥𝐵)
4241eleq2d 2824 . . . . . . 7 (𝑣 = 𝑠 → (𝑤𝑣 / 𝑥𝐵𝑤𝑠 / 𝑥𝐵))
43 breq1 5172 . . . . . . . 8 (𝑣 = 𝑠 → (𝑣𝑅(𝐹𝑤) ↔ 𝑠𝑅(𝐹𝑤)))
4443notbid 318 . . . . . . 7 (𝑣 = 𝑠 → (¬ 𝑣𝑅(𝐹𝑤) ↔ ¬ 𝑠𝑅(𝐹𝑤)))
4542, 44imbi12d 344 . . . . . 6 (𝑣 = 𝑠 → ((𝑤𝑣 / 𝑥𝐵 → ¬ 𝑣𝑅(𝐹𝑤)) ↔ (𝑤𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑤))))
4626, 40, 45cbvralw 3307 . . . . 5 (∀𝑣𝐴 (𝑤𝑣 / 𝑥𝐵 → ¬ 𝑣𝑅(𝐹𝑤)) ↔ ∀𝑠𝐴 (𝑤𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑤)))
47 eleq1w 2821 . . . . . . 7 (𝑤 = 𝑡 → (𝑤𝑠 / 𝑥𝐵𝑡𝑠 / 𝑥𝐵))
4813breq2d 5181 . . . . . . . 8 (𝑤 = 𝑡 → (𝑠𝑅(𝐹𝑤) ↔ 𝑠𝑅(𝐹𝑡)))
4948notbid 318 . . . . . . 7 (𝑤 = 𝑡 → (¬ 𝑠𝑅(𝐹𝑤) ↔ ¬ 𝑠𝑅(𝐹𝑡)))
5047, 49imbi12d 344 . . . . . 6 (𝑤 = 𝑡 → ((𝑤𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑤)) ↔ (𝑡𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑡))))
5150ralbidv 3180 . . . . 5 (𝑤 = 𝑡 → (∀𝑠𝐴 (𝑤𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑤)) ↔ ∀𝑠𝐴 (𝑡𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑡))))
5246, 51bitrid 283 . . . 4 (𝑤 = 𝑡 → (∀𝑣𝐴 (𝑤𝑣 / 𝑥𝐵 → ¬ 𝑣𝑅(𝐹𝑤)) ↔ ∀𝑠𝐴 (𝑡𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑡))))
5317, 25, 52cbvralw 3307 . . 3 (∀𝑤 𝑥𝐴 𝐵𝑣𝐴 (𝑤𝑣 / 𝑥𝐵 → ¬ 𝑣𝑅(𝐹𝑤)) ↔ ∀𝑡 𝑥𝐴 𝐵𝑠𝐴 (𝑡𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑡)))
543, 16, 533anbi123i 1155 . 2 ((𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑤 𝑥𝐴 𝐵𝑤(𝐹𝑤) / 𝑥𝐵 ∧ ∀𝑤 𝑥𝐴 𝐵𝑣𝐴 (𝑤𝑣 / 𝑥𝐵 → ¬ 𝑣𝑅(𝐹𝑤))) ↔ (𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵 ∧ ∀𝑡 𝑥𝐴 𝐵𝑠𝐴 (𝑡𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑡))))
552, 54sylib 218 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → (𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵 ∧ ∀𝑡 𝑥𝐴 𝐵𝑠𝐴 (𝑡𝑠 / 𝑥𝐵 → ¬ 𝑠𝑅(𝐹𝑡))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2103  wral 3063  {crab 3438  csb 3915   ciun 5019   class class class wbr 5169  cmpt 5252   Se wse 5652   We wwe 5653  wf 6568  cfv 6572  crio 7400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-fv 6580  df-riota 7401
This theorem is referenced by:  weiunpo  36378  weiunso  36379  weiunse  36383
  Copyright terms: Public domain W3C validator