Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weiunlem2 Structured version   Visualization version   GIF version

Theorem weiunlem2 36446
Description: Lemma for weiunpo 36448, weiunso 36449, weiunfr 36450, and weiunse 36451. (Contributed by Matthew House, 23-Aug-2025.)
Hypotheses
Ref Expression
weiun.1 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
weiun.2 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
weiunlem2.3 (𝜑𝑅 We 𝐴)
weiunlem2.4 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
weiunlem2 (𝜑 → (𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵 ∧ ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡)))
Distinct variable groups:   𝜑,𝑡   𝐴,𝑠,𝑡,𝑢,𝑣,𝑤,𝑥   𝑦,𝐴,𝑧,𝑥   𝐵,𝑠,𝑡,𝑢,𝑣,𝑤   𝑦,𝐵,𝑧   𝐹,𝑠,𝑡,𝑦,𝑧   𝑅,𝑠,𝑡,𝑢,𝑣,𝑤   𝑦,𝑅,𝑧   𝑆,𝑠,𝑡,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑠)   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑤,𝑣,𝑢)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑠)   𝐹(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem weiunlem2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 weiunlem2.3 . 2 (𝜑𝑅 We 𝐴)
2 weiunlem2.4 . 2 (𝜑𝑅 Se 𝐴)
3 riotaex 7392 . . . . . 6 (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢) ∈ V
4 weiun.1 . . . . . 6 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
53, 4fnmpti 6712 . . . . 5 𝐹 Fn 𝑥𝐴 𝐵
65a1i 11 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝑥𝐴 𝐵)
7 breq2 5152 . . . . . . . . . . . . 13 (𝑢 = 𝑟 → (𝑣𝑅𝑢𝑣𝑅𝑟))
87notbid 318 . . . . . . . . . . . 12 (𝑢 = 𝑟 → (¬ 𝑣𝑅𝑢 ↔ ¬ 𝑣𝑅𝑟))
98ralbidv 3176 . . . . . . . . . . 11 (𝑢 = 𝑟 → (∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢 ↔ ∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑟))
109cbvriotavw 7398 . . . . . . . . . 10 (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢) = (𝑟 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑟)
11 eleq1w 2822 . . . . . . . . . . . 12 (𝑤 = 𝑡 → (𝑤𝐵𝑡𝐵))
1211rabbidv 3441 . . . . . . . . . . 11 (𝑤 = 𝑡 → {𝑥𝐴𝑤𝐵} = {𝑥𝐴𝑡𝐵})
13 breq1 5151 . . . . . . . . . . . . . 14 (𝑣 = 𝑠 → (𝑣𝑅𝑟𝑠𝑅𝑟))
1413notbid 318 . . . . . . . . . . . . 13 (𝑣 = 𝑠 → (¬ 𝑣𝑅𝑟 ↔ ¬ 𝑠𝑅𝑟))
1514cbvralvw 3235 . . . . . . . . . . . 12 (∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑟 ↔ ∀𝑠 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑠𝑅𝑟)
1612raleqdv 3324 . . . . . . . . . . . 12 (𝑤 = 𝑡 → (∀𝑠 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑠𝑅𝑟 ↔ ∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟))
1715, 16bitrid 283 . . . . . . . . . . 11 (𝑤 = 𝑡 → (∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑟 ↔ ∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟))
1812, 17riotaeqbidv 7391 . . . . . . . . . 10 (𝑤 = 𝑡 → (𝑟 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑟) = (𝑟 ∈ {𝑥𝐴𝑡𝐵}∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟))
1910, 18eqtrid 2787 . . . . . . . . 9 (𝑤 = 𝑡 → (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢) = (𝑟 ∈ {𝑥𝐴𝑡𝐵}∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟))
2019, 4, 3fvmpt3i 7021 . . . . . . . 8 (𝑡 𝑥𝐴 𝐵 → (𝐹𝑡) = (𝑟 ∈ {𝑥𝐴𝑡𝐵}∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟))
2120adantl 481 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑡 𝑥𝐴 𝐵) → (𝐹𝑡) = (𝑟 ∈ {𝑥𝐴𝑡𝐵}∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟))
22 eliun 5000 . . . . . . . . . 10 (𝑡 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑡𝐵)
23 rabn0 4395 . . . . . . . . . 10 ({𝑥𝐴𝑡𝐵} ≠ ∅ ↔ ∃𝑥𝐴 𝑡𝐵)
2422, 23bitr4i 278 . . . . . . . . 9 (𝑡 𝑥𝐴 𝐵 ↔ {𝑥𝐴𝑡𝐵} ≠ ∅)
25 ssrab2 4090 . . . . . . . . . 10 {𝑥𝐴𝑡𝐵} ⊆ 𝐴
26 wereu2 5686 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ ({𝑥𝐴𝑡𝐵} ⊆ 𝐴 ∧ {𝑥𝐴𝑡𝐵} ≠ ∅)) → ∃!𝑟 ∈ {𝑥𝐴𝑡𝐵}∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟)
2725, 26mpanr1 703 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ {𝑥𝐴𝑡𝐵} ≠ ∅) → ∃!𝑟 ∈ {𝑥𝐴𝑡𝐵}∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟)
2824, 27sylan2b 594 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑡 𝑥𝐴 𝐵) → ∃!𝑟 ∈ {𝑥𝐴𝑡𝐵}∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟)
29 riotacl2 7404 . . . . . . . 8 (∃!𝑟 ∈ {𝑥𝐴𝑡𝐵}∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟 → (𝑟 ∈ {𝑥𝐴𝑡𝐵}∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟) ∈ {𝑟 ∈ {𝑥𝐴𝑡𝐵} ∣ ∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟})
3028, 29syl 17 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑡 𝑥𝐴 𝐵) → (𝑟 ∈ {𝑥𝐴𝑡𝐵}∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟) ∈ {𝑟 ∈ {𝑥𝐴𝑡𝐵} ∣ ∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟})
3121, 30eqeltrd 2839 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑡 𝑥𝐴 𝐵) → (𝐹𝑡) ∈ {𝑟 ∈ {𝑥𝐴𝑡𝐵} ∣ ∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟})
32 elrabi 3690 . . . . . 6 ((𝐹𝑡) ∈ {𝑟 ∈ {𝑥𝐴𝑡𝐵} ∣ ∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟} → (𝐹𝑡) ∈ {𝑥𝐴𝑡𝐵})
33 elrabi 3690 . . . . . 6 ((𝐹𝑡) ∈ {𝑥𝐴𝑡𝐵} → (𝐹𝑡) ∈ 𝐴)
3431, 32, 333syl 18 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑡 𝑥𝐴 𝐵) → (𝐹𝑡) ∈ 𝐴)
3534ralrimiva 3144 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑡 𝑥𝐴 𝐵(𝐹𝑡) ∈ 𝐴)
36 ffnfv 7139 . . . 4 (𝐹: 𝑥𝐴 𝐵𝐴 ↔ (𝐹 Fn 𝑥𝐴 𝐵 ∧ ∀𝑡 𝑥𝐴 𝐵(𝐹𝑡) ∈ 𝐴))
376, 35, 36sylanbrc 583 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹: 𝑥𝐴 𝐵𝐴)
38 dfsbcq 3793 . . . . . . 7 (𝑠 = (𝐹𝑡) → ([𝑠 / 𝑥]𝑡𝐵[(𝐹𝑡) / 𝑥]𝑡𝐵))
39 nfcv 2903 . . . . . . . . 9 𝑥𝐴
4039elrabsf 3840 . . . . . . . 8 (𝑠 ∈ {𝑥𝐴𝑡𝐵} ↔ (𝑠𝐴[𝑠 / 𝑥]𝑡𝐵))
4140simprbi 496 . . . . . . 7 (𝑠 ∈ {𝑥𝐴𝑡𝐵} → [𝑠 / 𝑥]𝑡𝐵)
4238, 41vtoclga 3577 . . . . . 6 ((𝐹𝑡) ∈ {𝑥𝐴𝑡𝐵} → [(𝐹𝑡) / 𝑥]𝑡𝐵)
4331, 32, 423syl 18 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑡 𝑥𝐴 𝐵) → [(𝐹𝑡) / 𝑥]𝑡𝐵)
44 sbcel2 4424 . . . . 5 ([(𝐹𝑡) / 𝑥]𝑡𝐵𝑡(𝐹𝑡) / 𝑥𝐵)
4543, 44sylib 218 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑡 𝑥𝐴 𝐵) → 𝑡(𝐹𝑡) / 𝑥𝐵)
4645ralrimiva 3144 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵)
47 simpr 484 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝑠𝐴𝑡𝑠 / 𝑥𝐵)) → (𝑠𝐴𝑡𝑠 / 𝑥𝐵))
48 sbcel2 4424 . . . . . . . . . . 11 ([𝑠 / 𝑥]𝑡𝐵𝑡𝑠 / 𝑥𝐵)
4948anbi2i 623 . . . . . . . . . 10 ((𝑠𝐴[𝑠 / 𝑥]𝑡𝐵) ↔ (𝑠𝐴𝑡𝑠 / 𝑥𝐵))
5040, 49bitri 275 . . . . . . . . 9 (𝑠 ∈ {𝑥𝐴𝑡𝐵} ↔ (𝑠𝐴𝑡𝑠 / 𝑥𝐵))
5147, 50sylibr 234 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝑠𝐴𝑡𝑠 / 𝑥𝐵)) → 𝑠 ∈ {𝑥𝐴𝑡𝐵})
5251ne0d 4348 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝑠𝐴𝑡𝑠 / 𝑥𝐵)) → {𝑥𝐴𝑡𝐵} ≠ ∅)
5352, 24sylibr 234 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝑠𝐴𝑡𝑠 / 𝑥𝐵)) → 𝑡 𝑥𝐴 𝐵)
54 breq2 5152 . . . . . . . . . . 11 (𝑟 = (𝐹𝑡) → (𝑠𝑅𝑟𝑠𝑅(𝐹𝑡)))
5554notbid 318 . . . . . . . . . 10 (𝑟 = (𝐹𝑡) → (¬ 𝑠𝑅𝑟 ↔ ¬ 𝑠𝑅(𝐹𝑡)))
5655ralbidv 3176 . . . . . . . . 9 (𝑟 = (𝐹𝑡) → (∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟 ↔ ∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅(𝐹𝑡)))
5756elrab 3695 . . . . . . . 8 ((𝐹𝑡) ∈ {𝑟 ∈ {𝑥𝐴𝑡𝐵} ∣ ∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟} ↔ ((𝐹𝑡) ∈ {𝑥𝐴𝑡𝐵} ∧ ∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅(𝐹𝑡)))
5857simprbi 496 . . . . . . 7 ((𝐹𝑡) ∈ {𝑟 ∈ {𝑥𝐴𝑡𝐵} ∣ ∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅𝑟} → ∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅(𝐹𝑡))
5931, 58syl 17 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑡 𝑥𝐴 𝐵) → ∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅(𝐹𝑡))
6053, 59syldan 591 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝑠𝐴𝑡𝑠 / 𝑥𝐵)) → ∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅(𝐹𝑡))
61 rsp 3245 . . . . 5 (∀𝑠 ∈ {𝑥𝐴𝑡𝐵} ¬ 𝑠𝑅(𝐹𝑡) → (𝑠 ∈ {𝑥𝐴𝑡𝐵} → ¬ 𝑠𝑅(𝐹𝑡)))
6260, 51, 61sylc 65 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝑠𝐴𝑡𝑠 / 𝑥𝐵)) → ¬ 𝑠𝑅(𝐹𝑡))
6362ralrimivva 3200 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡))
6437, 46, 633jca 1127 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → (𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵 ∧ ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡)))
651, 2, 64syl2anc 584 1 (𝜑 → (𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵 ∧ ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  ∃!wreu 3376  {crab 3433  [wsbc 3791  csb 3908  wss 3963  c0 4339   ciun 4996   class class class wbr 5148  {copab 5210  cmpt 5231   Se wse 5639   We wwe 5640   Fn wfn 6558  wf 6559  cfv 6563  crio 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-riota 7388
This theorem is referenced by:  weiunfrlem  36447  weiunpo  36448  weiunso  36449  weiunfr  36450  weiunse  36451
  Copyright terms: Public domain W3C validator