Step | Hyp | Ref
| Expression |
1 | | weiunlem2.3 |
. 2
⊢ (𝜑 → 𝑅 We 𝐴) |
2 | | weiunlem2.4 |
. 2
⊢ (𝜑 → 𝑅 Se 𝐴) |
3 | | riotaex 7408 |
. . . . . 6
⊢
(℩𝑢
∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢) ∈ V |
4 | | weiun.1 |
. . . . . 6
⊢ 𝐹 = (𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) |
5 | 3, 4 | fnmpti 6723 |
. . . . 5
⊢ 𝐹 Fn ∪ 𝑥 ∈ 𝐴 𝐵 |
6 | 5 | a1i 11 |
. . . 4
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn ∪
𝑥 ∈ 𝐴 𝐵) |
7 | | breq2 5170 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑟 → (𝑣𝑅𝑢 ↔ 𝑣𝑅𝑟)) |
8 | 7 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑟 → (¬ 𝑣𝑅𝑢 ↔ ¬ 𝑣𝑅𝑟)) |
9 | 8 | ralbidv 3184 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑟 → (∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢 ↔ ∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑟)) |
10 | 9 | cbvriotavw 7414 |
. . . . . . . . . 10
⊢
(℩𝑢
∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢) = (℩𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑟) |
11 | | eleq1w 2827 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑡 → (𝑤 ∈ 𝐵 ↔ 𝑡 ∈ 𝐵)) |
12 | 11 | rabbidv 3451 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑡 → {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵}) |
13 | | breq1 5169 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑠 → (𝑣𝑅𝑟 ↔ 𝑠𝑅𝑟)) |
14 | 13 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑠 → (¬ 𝑣𝑅𝑟 ↔ ¬ 𝑠𝑅𝑟)) |
15 | 14 | cbvralvw 3243 |
. . . . . . . . . . . 12
⊢
(∀𝑣 ∈
{𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑟 ↔ ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑠𝑅𝑟) |
16 | 12 | raleqdv 3334 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑡 → (∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑠𝑅𝑟 ↔ ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟)) |
17 | 15, 16 | bitrid 283 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑡 → (∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑟 ↔ ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟)) |
18 | 12, 17 | riotaeqbidv 7407 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑡 → (℩𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑟) = (℩𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵}∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟)) |
19 | 10, 18 | eqtrid 2792 |
. . . . . . . . 9
⊢ (𝑤 = 𝑡 → (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢) = (℩𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵}∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟)) |
20 | 19, 4, 3 | fvmpt3i 7034 |
. . . . . . . 8
⊢ (𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → (𝐹‘𝑡) = (℩𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵}∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟)) |
21 | 20 | adantl 481 |
. . . . . . 7
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → (𝐹‘𝑡) = (℩𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵}∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟)) |
22 | | eliun 5019 |
. . . . . . . . . 10
⊢ (𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐵) |
23 | | rabn0 4412 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐵) |
24 | 22, 23 | bitr4i 278 |
. . . . . . . . 9
⊢ (𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ≠ ∅) |
25 | | ssrab2 4103 |
. . . . . . . . . 10
⊢ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ⊆ 𝐴 |
26 | | wereu2 5697 |
. . . . . . . . . 10
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ ({𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ⊆ 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ≠ ∅)) → ∃!𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵}∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟) |
27 | 25, 26 | mpanr1 702 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ≠ ∅) → ∃!𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵}∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟) |
28 | 24, 27 | sylan2b 593 |
. . . . . . . 8
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ∃!𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵}∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟) |
29 | | riotacl2 7421 |
. . . . . . . 8
⊢
(∃!𝑟 ∈
{𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵}∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟 → (℩𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵}∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟) ∈ {𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ∣ ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟}) |
30 | 28, 29 | syl 17 |
. . . . . . 7
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → (℩𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵}∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟) ∈ {𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ∣ ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟}) |
31 | 21, 30 | eqeltrd 2844 |
. . . . . 6
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → (𝐹‘𝑡) ∈ {𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ∣ ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟}) |
32 | | elrabi 3703 |
. . . . . 6
⊢ ((𝐹‘𝑡) ∈ {𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ∣ ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟} → (𝐹‘𝑡) ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵}) |
33 | | elrabi 3703 |
. . . . . 6
⊢ ((𝐹‘𝑡) ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} → (𝐹‘𝑡) ∈ 𝐴) |
34 | 31, 32, 33 | 3syl 18 |
. . . . 5
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → (𝐹‘𝑡) ∈ 𝐴) |
35 | 34 | ralrimiva 3152 |
. . . 4
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝐹‘𝑡) ∈ 𝐴) |
36 | | ffnfv 7153 |
. . . 4
⊢ (𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴 ↔ (𝐹 Fn ∪
𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝐹‘𝑡) ∈ 𝐴)) |
37 | 6, 35, 36 | sylanbrc 582 |
. . 3
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴) |
38 | | dfsbcq 3806 |
. . . . . . 7
⊢ (𝑠 = (𝐹‘𝑡) → ([𝑠 / 𝑥]𝑡 ∈ 𝐵 ↔ [(𝐹‘𝑡) / 𝑥]𝑡 ∈ 𝐵)) |
39 | | nfcv 2908 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐴 |
40 | 39 | elrabsf 3853 |
. . . . . . . 8
⊢ (𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ↔ (𝑠 ∈ 𝐴 ∧ [𝑠 / 𝑥]𝑡 ∈ 𝐵)) |
41 | 40 | simprbi 496 |
. . . . . . 7
⊢ (𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} → [𝑠 / 𝑥]𝑡 ∈ 𝐵) |
42 | 38, 41 | vtoclga 3589 |
. . . . . 6
⊢ ((𝐹‘𝑡) ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} → [(𝐹‘𝑡) / 𝑥]𝑡 ∈ 𝐵) |
43 | 31, 32, 42 | 3syl 18 |
. . . . 5
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → [(𝐹‘𝑡) / 𝑥]𝑡 ∈ 𝐵) |
44 | | sbcel2 4441 |
. . . . 5
⊢
([(𝐹‘𝑡) / 𝑥]𝑡 ∈ 𝐵 ↔ 𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵) |
45 | 43, 44 | sylib 218 |
. . . 4
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → 𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵) |
46 | 45 | ralrimiva 3152 |
. . 3
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵) |
47 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵)) → (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵)) |
48 | | sbcel2 4441 |
. . . . . . . . . . 11
⊢
([𝑠 / 𝑥]𝑡 ∈ 𝐵 ↔ 𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵) |
49 | 48 | anbi2i 622 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ 𝐴 ∧ [𝑠 / 𝑥]𝑡 ∈ 𝐵) ↔ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵)) |
50 | 40, 49 | bitri 275 |
. . . . . . . . 9
⊢ (𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ↔ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵)) |
51 | 47, 50 | sylibr 234 |
. . . . . . . 8
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵)) → 𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵}) |
52 | 51 | ne0d 4365 |
. . . . . . 7
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵)) → {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ≠ ∅) |
53 | 52, 24 | sylibr 234 |
. . . . . 6
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵)) → 𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
54 | | breq2 5170 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝐹‘𝑡) → (𝑠𝑅𝑟 ↔ 𝑠𝑅(𝐹‘𝑡))) |
55 | 54 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑟 = (𝐹‘𝑡) → (¬ 𝑠𝑅𝑟 ↔ ¬ 𝑠𝑅(𝐹‘𝑡))) |
56 | 55 | ralbidv 3184 |
. . . . . . . . 9
⊢ (𝑟 = (𝐹‘𝑡) → (∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟 ↔ ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅(𝐹‘𝑡))) |
57 | 56 | elrab 3708 |
. . . . . . . 8
⊢ ((𝐹‘𝑡) ∈ {𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ∣ ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟} ↔ ((𝐹‘𝑡) ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ∧ ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅(𝐹‘𝑡))) |
58 | 57 | simprbi 496 |
. . . . . . 7
⊢ ((𝐹‘𝑡) ∈ {𝑟 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ∣ ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅𝑟} → ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅(𝐹‘𝑡)) |
59 | 31, 58 | syl 17 |
. . . . . 6
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅(𝐹‘𝑡)) |
60 | 53, 59 | syldan 590 |
. . . . 5
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵)) → ∀𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅(𝐹‘𝑡)) |
61 | | rsp 3253 |
. . . . 5
⊢
(∀𝑠 ∈
{𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} ¬ 𝑠𝑅(𝐹‘𝑡) → (𝑠 ∈ {𝑥 ∈ 𝐴 ∣ 𝑡 ∈ 𝐵} → ¬ 𝑠𝑅(𝐹‘𝑡))) |
62 | 60, 51, 61 | sylc 65 |
. . . 4
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵)) → ¬ 𝑠𝑅(𝐹‘𝑡)) |
63 | 62 | ralrimivva 3208 |
. . 3
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑠 ∈ 𝐴 ∀𝑡 ∈ ⦋ 𝑠 / 𝑥⦌𝐵 ¬ 𝑠𝑅(𝐹‘𝑡)) |
64 | 37, 46, 63 | 3jca 1128 |
. 2
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵 ∧ ∀𝑠 ∈ 𝐴 ∀𝑡 ∈ ⦋ 𝑠 / 𝑥⦌𝐵 ¬ 𝑠𝑅(𝐹‘𝑡))) |
65 | 1, 2, 64 | syl2anc 583 |
1
⊢ (𝜑 → (𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵 ∧ ∀𝑠 ∈ 𝐴 ∀𝑡 ∈ ⦋ 𝑠 / 𝑥⦌𝐵 ¬ 𝑠𝑅(𝐹‘𝑡))) |