Proof of Theorem weiunlem2
Step | Hyp | Ref
| Expression |
1 | | weiunlem2.1 |
. . 3
⊢ 𝐹 = (𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) |
2 | 1 | weiunlem1 36376 |
. 2
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝑤 ∈ ⦋(𝐹‘𝑤) / 𝑥⦌𝐵 ∧ ∀𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵∀𝑣 ∈ 𝐴 (𝑤 ∈ ⦋𝑣 / 𝑥⦌𝐵 → ¬ 𝑣𝑅(𝐹‘𝑤)))) |
3 | | biid 261 |
. . 3
⊢ (𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴) |
4 | | nfv 1913 |
. . . 4
⊢
Ⅎ𝑡 𝑤 ∈ ⦋(𝐹‘𝑤) / 𝑥⦌𝐵 |
5 | | nfmpt1 5277 |
. . . . . . . 8
⊢
Ⅎ𝑤(𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) |
6 | 1, 5 | nfcxfr 2902 |
. . . . . . 7
⊢
Ⅎ𝑤𝐹 |
7 | | nfcv 2904 |
. . . . . . 7
⊢
Ⅎ𝑤𝑡 |
8 | 6, 7 | nffv 6929 |
. . . . . 6
⊢
Ⅎ𝑤(𝐹‘𝑡) |
9 | | nfcv 2904 |
. . . . . 6
⊢
Ⅎ𝑤𝐵 |
10 | 8, 9 | nfcsbw 3942 |
. . . . 5
⊢
Ⅎ𝑤⦋(𝐹‘𝑡) / 𝑥⦌𝐵 |
11 | 10 | nfcri 2895 |
. . . 4
⊢
Ⅎ𝑤 𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵 |
12 | | id 22 |
. . . . 5
⊢ (𝑤 = 𝑡 → 𝑤 = 𝑡) |
13 | | fveq2 6919 |
. . . . . 6
⊢ (𝑤 = 𝑡 → (𝐹‘𝑤) = (𝐹‘𝑡)) |
14 | 13 | csbeq1d 3919 |
. . . . 5
⊢ (𝑤 = 𝑡 → ⦋(𝐹‘𝑤) / 𝑥⦌𝐵 = ⦋(𝐹‘𝑡) / 𝑥⦌𝐵) |
15 | 12, 14 | eleq12d 2832 |
. . . 4
⊢ (𝑤 = 𝑡 → (𝑤 ∈ ⦋(𝐹‘𝑤) / 𝑥⦌𝐵 ↔ 𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵)) |
16 | 4, 11, 15 | cbvralw 3307 |
. . 3
⊢
(∀𝑤 ∈
∪ 𝑥 ∈ 𝐴 𝐵𝑤 ∈ ⦋(𝐹‘𝑤) / 𝑥⦌𝐵 ↔ ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵) |
17 | | nfv 1913 |
. . . 4
⊢
Ⅎ𝑡∀𝑣 ∈ 𝐴 (𝑤 ∈ ⦋𝑣 / 𝑥⦌𝐵 → ¬ 𝑣𝑅(𝐹‘𝑤)) |
18 | | nfcv 2904 |
. . . . 5
⊢
Ⅎ𝑤𝐴 |
19 | | nfv 1913 |
. . . . . 6
⊢
Ⅎ𝑤 𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵 |
20 | | nfcv 2904 |
. . . . . . . 8
⊢
Ⅎ𝑤𝑠 |
21 | | nfcv 2904 |
. . . . . . . 8
⊢
Ⅎ𝑤𝑅 |
22 | 20, 21, 8 | nfbr 5216 |
. . . . . . 7
⊢
Ⅎ𝑤 𝑠𝑅(𝐹‘𝑡) |
23 | 22 | nfn 1856 |
. . . . . 6
⊢
Ⅎ𝑤 ¬ 𝑠𝑅(𝐹‘𝑡) |
24 | 19, 23 | nfim 1895 |
. . . . 5
⊢
Ⅎ𝑤(𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵 → ¬ 𝑠𝑅(𝐹‘𝑡)) |
25 | 18, 24 | nfralw 3312 |
. . . 4
⊢
Ⅎ𝑤∀𝑠 ∈ 𝐴 (𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵 → ¬ 𝑠𝑅(𝐹‘𝑡)) |
26 | | nfv 1913 |
. . . . . 6
⊢
Ⅎ𝑠(𝑤 ∈ ⦋𝑣 / 𝑥⦌𝐵 → ¬ 𝑣𝑅(𝐹‘𝑤)) |
27 | | nfv 1913 |
. . . . . . 7
⊢
Ⅎ𝑣 𝑤 ∈ ⦋𝑠 / 𝑥⦌𝐵 |
28 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑣𝑠 |
29 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑣𝑅 |
30 | | nfcv 2904 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑣∪ 𝑥 ∈ 𝐴 𝐵 |
31 | | nfra1 3285 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢 |
32 | | nfcv 2904 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣{𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} |
33 | 31, 32 | nfriota 7414 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑣(℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢) |
34 | 30, 33 | nfmpt 5276 |
. . . . . . . . . . 11
⊢
Ⅎ𝑣(𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) |
35 | 1, 34 | nfcxfr 2902 |
. . . . . . . . . 10
⊢
Ⅎ𝑣𝐹 |
36 | | nfcv 2904 |
. . . . . . . . . 10
⊢
Ⅎ𝑣𝑤 |
37 | 35, 36 | nffv 6929 |
. . . . . . . . 9
⊢
Ⅎ𝑣(𝐹‘𝑤) |
38 | 28, 29, 37 | nfbr 5216 |
. . . . . . . 8
⊢
Ⅎ𝑣 𝑠𝑅(𝐹‘𝑤) |
39 | 38 | nfn 1856 |
. . . . . . 7
⊢
Ⅎ𝑣 ¬ 𝑠𝑅(𝐹‘𝑤) |
40 | 27, 39 | nfim 1895 |
. . . . . 6
⊢
Ⅎ𝑣(𝑤 ∈ ⦋𝑠 / 𝑥⦌𝐵 → ¬ 𝑠𝑅(𝐹‘𝑤)) |
41 | | csbeq1 3918 |
. . . . . . . 8
⊢ (𝑣 = 𝑠 → ⦋𝑣 / 𝑥⦌𝐵 = ⦋𝑠 / 𝑥⦌𝐵) |
42 | 41 | eleq2d 2824 |
. . . . . . 7
⊢ (𝑣 = 𝑠 → (𝑤 ∈ ⦋𝑣 / 𝑥⦌𝐵 ↔ 𝑤 ∈ ⦋𝑠 / 𝑥⦌𝐵)) |
43 | | breq1 5172 |
. . . . . . . 8
⊢ (𝑣 = 𝑠 → (𝑣𝑅(𝐹‘𝑤) ↔ 𝑠𝑅(𝐹‘𝑤))) |
44 | 43 | notbid 318 |
. . . . . . 7
⊢ (𝑣 = 𝑠 → (¬ 𝑣𝑅(𝐹‘𝑤) ↔ ¬ 𝑠𝑅(𝐹‘𝑤))) |
45 | 42, 44 | imbi12d 344 |
. . . . . 6
⊢ (𝑣 = 𝑠 → ((𝑤 ∈ ⦋𝑣 / 𝑥⦌𝐵 → ¬ 𝑣𝑅(𝐹‘𝑤)) ↔ (𝑤 ∈ ⦋𝑠 / 𝑥⦌𝐵 → ¬ 𝑠𝑅(𝐹‘𝑤)))) |
46 | 26, 40, 45 | cbvralw 3307 |
. . . . 5
⊢
(∀𝑣 ∈
𝐴 (𝑤 ∈ ⦋𝑣 / 𝑥⦌𝐵 → ¬ 𝑣𝑅(𝐹‘𝑤)) ↔ ∀𝑠 ∈ 𝐴 (𝑤 ∈ ⦋𝑠 / 𝑥⦌𝐵 → ¬ 𝑠𝑅(𝐹‘𝑤))) |
47 | | eleq1w 2821 |
. . . . . . 7
⊢ (𝑤 = 𝑡 → (𝑤 ∈ ⦋𝑠 / 𝑥⦌𝐵 ↔ 𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵)) |
48 | 13 | breq2d 5181 |
. . . . . . . 8
⊢ (𝑤 = 𝑡 → (𝑠𝑅(𝐹‘𝑤) ↔ 𝑠𝑅(𝐹‘𝑡))) |
49 | 48 | notbid 318 |
. . . . . . 7
⊢ (𝑤 = 𝑡 → (¬ 𝑠𝑅(𝐹‘𝑤) ↔ ¬ 𝑠𝑅(𝐹‘𝑡))) |
50 | 47, 49 | imbi12d 344 |
. . . . . 6
⊢ (𝑤 = 𝑡 → ((𝑤 ∈ ⦋𝑠 / 𝑥⦌𝐵 → ¬ 𝑠𝑅(𝐹‘𝑤)) ↔ (𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵 → ¬ 𝑠𝑅(𝐹‘𝑡)))) |
51 | 50 | ralbidv 3180 |
. . . . 5
⊢ (𝑤 = 𝑡 → (∀𝑠 ∈ 𝐴 (𝑤 ∈ ⦋𝑠 / 𝑥⦌𝐵 → ¬ 𝑠𝑅(𝐹‘𝑤)) ↔ ∀𝑠 ∈ 𝐴 (𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵 → ¬ 𝑠𝑅(𝐹‘𝑡)))) |
52 | 46, 51 | bitrid 283 |
. . . 4
⊢ (𝑤 = 𝑡 → (∀𝑣 ∈ 𝐴 (𝑤 ∈ ⦋𝑣 / 𝑥⦌𝐵 → ¬ 𝑣𝑅(𝐹‘𝑤)) ↔ ∀𝑠 ∈ 𝐴 (𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵 → ¬ 𝑠𝑅(𝐹‘𝑡)))) |
53 | 17, 25, 52 | cbvralw 3307 |
. . 3
⊢
(∀𝑤 ∈
∪ 𝑥 ∈ 𝐴 𝐵∀𝑣 ∈ 𝐴 (𝑤 ∈ ⦋𝑣 / 𝑥⦌𝐵 → ¬ 𝑣𝑅(𝐹‘𝑤)) ↔ ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵∀𝑠 ∈ 𝐴 (𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵 → ¬ 𝑠𝑅(𝐹‘𝑡))) |
54 | 3, 16, 53 | 3anbi123i 1155 |
. 2
⊢ ((𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝑤 ∈ ⦋(𝐹‘𝑤) / 𝑥⦌𝐵 ∧ ∀𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵∀𝑣 ∈ 𝐴 (𝑤 ∈ ⦋𝑣 / 𝑥⦌𝐵 → ¬ 𝑣𝑅(𝐹‘𝑤))) ↔ (𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵 ∧ ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵∀𝑠 ∈ 𝐴 (𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵 → ¬ 𝑠𝑅(𝐹‘𝑡)))) |
55 | 2, 54 | sylib 218 |
1
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵 ∧ ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵∀𝑠 ∈ 𝐴 (𝑡 ∈ ⦋𝑠 / 𝑥⦌𝐵 → ¬ 𝑠𝑅(𝐹‘𝑡)))) |