Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weiunse Structured version   Visualization version   GIF version

Theorem weiunse 36481
Description: The relation constructed in weiunpo 36478, weiunso 36479, weiunfr 36480, and weiunwe 36482 is set-like if all members of the indexed union are sets. (Contributed by Matthew House, 23-Aug-2025.)
Hypotheses
Ref Expression
weiun.1 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
weiun.2 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
Assertion
Ref Expression
weiunse ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑇 Se 𝑥𝐴 𝐵)
Distinct variable groups:   𝑢,𝐴,𝑣,𝑤,𝑥   𝑦,𝐴,𝑧,𝑥   𝑢,𝐵,𝑣,𝑤   𝑦,𝐵,𝑧   𝑦,𝐹,𝑧   𝑢,𝑅,𝑣,𝑤   𝑦,𝑅,𝑧   𝑦,𝑆,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑤,𝑣,𝑢)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐹(𝑥,𝑤,𝑣,𝑢)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem weiunse
Dummy variables 𝑡 𝑝 𝑞 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → 𝑅 Se 𝐴)
2 weiun.1 . . . . . . . . . 10 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
3 weiun.2 . . . . . . . . . 10 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
4 simpl1 1192 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → 𝑅 We 𝐴)
52, 3, 4, 1weiunlem2 36476 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → (𝐹: 𝑥𝐴 𝐵𝐴 ∧ ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵 ∧ ∀𝑠𝐴𝑡 𝑠 / 𝑥𝐵 ¬ 𝑠𝑅(𝐹𝑡)))
65simp1d 1142 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → 𝐹: 𝑥𝐴 𝐵𝐴)
7 simpr 484 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → 𝑝 𝑥𝐴 𝐵)
86, 7ffvelcdmd 7013 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → (𝐹𝑝) ∈ 𝐴)
9 seex 5573 . . . . . . 7 ((𝑅 Se 𝐴 ∧ (𝐹𝑝) ∈ 𝐴) → {𝑟𝐴𝑟𝑅(𝐹𝑝)} ∈ V)
101, 8, 9syl2anc 584 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → {𝑟𝐴𝑟𝑅(𝐹𝑝)} ∈ V)
11 snex 5372 . . . . . 6 {(𝐹𝑝)} ∈ V
12 unexg 7671 . . . . . 6 (({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∈ V ∧ {(𝐹𝑝)} ∈ V) → ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)}) ∈ V)
1310, 11, 12sylancl 586 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)}) ∈ V)
14 ssrab2 4028 . . . . . . . 8 {𝑟𝐴𝑟𝑅(𝐹𝑝)} ⊆ 𝐴
1514a1i 11 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → {𝑟𝐴𝑟𝑅(𝐹𝑝)} ⊆ 𝐴)
168snssd 4759 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → {(𝐹𝑝)} ⊆ 𝐴)
1715, 16unssd 4140 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)}) ⊆ 𝐴)
18 simpl3 1194 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → ∀𝑥𝐴 𝐵𝑉)
19 elex 3455 . . . . . . . . 9 (𝐵𝑉𝐵 ∈ V)
2019ralimi 3067 . . . . . . . 8 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵 ∈ V)
2118, 20syl 17 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → ∀𝑥𝐴 𝐵 ∈ V)
22 nfv 1915 . . . . . . . 8 𝑠 𝐵 ∈ V
23 nfcsb1v 3872 . . . . . . . . 9 𝑥𝑠 / 𝑥𝐵
2423nfel1 2909 . . . . . . . 8 𝑥𝑠 / 𝑥𝐵 ∈ V
25 csbeq1a 3862 . . . . . . . . 9 (𝑥 = 𝑠𝐵 = 𝑠 / 𝑥𝐵)
2625eleq1d 2814 . . . . . . . 8 (𝑥 = 𝑠 → (𝐵 ∈ V ↔ 𝑠 / 𝑥𝐵 ∈ V))
2722, 24, 26cbvralw 3272 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ V ↔ ∀𝑠𝐴 𝑠 / 𝑥𝐵 ∈ V)
2821, 27sylib 218 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → ∀𝑠𝐴 𝑠 / 𝑥𝐵 ∈ V)
29 ssralv 4001 . . . . . 6 (({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)}) ⊆ 𝐴 → (∀𝑠𝐴 𝑠 / 𝑥𝐵 ∈ V → ∀𝑠 ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)})𝑠 / 𝑥𝐵 ∈ V))
3017, 28, 29sylc 65 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → ∀𝑠 ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)})𝑠 / 𝑥𝐵 ∈ V)
31 iunexg 7890 . . . . 5 ((({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)}) ∈ V ∧ ∀𝑠 ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)})𝑠 / 𝑥𝐵 ∈ V) → 𝑠 ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)})𝑠 / 𝑥𝐵 ∈ V)
3213, 30, 31syl2anc 584 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → 𝑠 ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)})𝑠 / 𝑥𝐵 ∈ V)
3363ad2ant1 1133 . . . . . . . . 9 ((((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) ∧ 𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝) → 𝐹: 𝑥𝐴 𝐵𝐴)
34 simp2 1137 . . . . . . . . 9 ((((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) ∧ 𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝) → 𝑞 𝑥𝐴 𝐵)
3533, 34ffvelcdmd 7013 . . . . . . . 8 ((((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) ∧ 𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝) → (𝐹𝑞) ∈ 𝐴)
36 breq1 5092 . . . . . . . . . 10 (𝑟 = (𝐹𝑞) → (𝑟𝑅(𝐹𝑝) ↔ (𝐹𝑞)𝑅(𝐹𝑝)))
3736elrab 3645 . . . . . . . . 9 ((𝐹𝑞) ∈ {𝑟𝐴𝑟𝑅(𝐹𝑝)} ↔ ((𝐹𝑞) ∈ 𝐴 ∧ (𝐹𝑞)𝑅(𝐹𝑝)))
38 elun1 4130 . . . . . . . . 9 ((𝐹𝑞) ∈ {𝑟𝐴𝑟𝑅(𝐹𝑝)} → (𝐹𝑞) ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)}))
3937, 38sylbir 235 . . . . . . . 8 (((𝐹𝑞) ∈ 𝐴 ∧ (𝐹𝑞)𝑅(𝐹𝑝)) → (𝐹𝑞) ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)}))
4035, 39sylan 580 . . . . . . 7 (((((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) ∧ 𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝) ∧ (𝐹𝑞)𝑅(𝐹𝑝)) → (𝐹𝑞) ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)}))
41 fvex 6830 . . . . . . . . . 10 (𝐹𝑞) ∈ V
4241elsn 4589 . . . . . . . . 9 ((𝐹𝑞) ∈ {(𝐹𝑝)} ↔ (𝐹𝑞) = (𝐹𝑝))
43 elun2 4131 . . . . . . . . 9 ((𝐹𝑞) ∈ {(𝐹𝑝)} → (𝐹𝑞) ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)}))
4442, 43sylbir 235 . . . . . . . 8 ((𝐹𝑞) = (𝐹𝑝) → (𝐹𝑞) ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)}))
4544ad2antrl 728 . . . . . . 7 (((((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) ∧ 𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝) ∧ ((𝐹𝑞) = (𝐹𝑝) ∧ 𝑞(𝐹𝑞) / 𝑥𝑆𝑝)) → (𝐹𝑞) ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)}))
462, 3weiunlem1 36475 . . . . . . . . 9 (𝑞𝑇𝑝 ↔ ((𝑞 𝑥𝐴 𝐵𝑝 𝑥𝐴 𝐵) ∧ ((𝐹𝑞)𝑅(𝐹𝑝) ∨ ((𝐹𝑞) = (𝐹𝑝) ∧ 𝑞(𝐹𝑞) / 𝑥𝑆𝑝))))
4746simprbi 496 . . . . . . . 8 (𝑞𝑇𝑝 → ((𝐹𝑞)𝑅(𝐹𝑝) ∨ ((𝐹𝑞) = (𝐹𝑝) ∧ 𝑞(𝐹𝑞) / 𝑥𝑆𝑝)))
48473ad2ant3 1135 . . . . . . 7 ((((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) ∧ 𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝) → ((𝐹𝑞)𝑅(𝐹𝑝) ∨ ((𝐹𝑞) = (𝐹𝑝) ∧ 𝑞(𝐹𝑞) / 𝑥𝑆𝑝)))
4940, 45, 48mpjaodan 960 . . . . . 6 ((((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) ∧ 𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝) → (𝐹𝑞) ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)}))
50 id 22 . . . . . . . 8 (𝑡 = 𝑞𝑡 = 𝑞)
51 fveq2 6817 . . . . . . . . 9 (𝑡 = 𝑞 → (𝐹𝑡) = (𝐹𝑞))
5251csbeq1d 3852 . . . . . . . 8 (𝑡 = 𝑞(𝐹𝑡) / 𝑥𝐵 = (𝐹𝑞) / 𝑥𝐵)
5350, 52eleq12d 2823 . . . . . . 7 (𝑡 = 𝑞 → (𝑡(𝐹𝑡) / 𝑥𝐵𝑞(𝐹𝑞) / 𝑥𝐵))
545simp2d 1143 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵)
55543ad2ant1 1133 . . . . . . 7 ((((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) ∧ 𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝) → ∀𝑡 𝑥𝐴 𝐵𝑡(𝐹𝑡) / 𝑥𝐵)
5653, 55, 34rspcdva 3576 . . . . . 6 ((((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) ∧ 𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝) → 𝑞(𝐹𝑞) / 𝑥𝐵)
57 csbeq1 3851 . . . . . . 7 (𝑠 = (𝐹𝑞) → 𝑠 / 𝑥𝐵 = (𝐹𝑞) / 𝑥𝐵)
5857eliuni 4945 . . . . . 6 (((𝐹𝑞) ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)}) ∧ 𝑞(𝐹𝑞) / 𝑥𝐵) → 𝑞 𝑠 ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)})𝑠 / 𝑥𝐵)
5949, 56, 58syl2anc 584 . . . . 5 ((((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) ∧ 𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝) → 𝑞 𝑠 ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)})𝑠 / 𝑥𝐵)
6059rabssdv 4023 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → {𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝} ⊆ 𝑠 ∈ ({𝑟𝐴𝑟𝑅(𝐹𝑝)} ∪ {(𝐹𝑝)})𝑠 / 𝑥𝐵)
6132, 60ssexd 5260 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) ∧ 𝑝 𝑥𝐴 𝐵) → {𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝} ∈ V)
6261ralrimiva 3122 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) → ∀𝑝 𝑥𝐴 𝐵{𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝} ∈ V)
63 df-se 5568 . 2 (𝑇 Se 𝑥𝐴 𝐵 ↔ ∀𝑝 𝑥𝐴 𝐵{𝑞 𝑥𝐴 𝐵𝑞𝑇𝑝} ∈ V)
6462, 63sylibr 234 1 ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑇 Se 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2110  wral 3045  {crab 3393  Vcvv 3434  csb 3848  cun 3898  wss 3900  {csn 4574   ciun 4939   class class class wbr 5089  {copab 5151  cmpt 5170   Se wse 5565   We wwe 5566  wf 6473  cfv 6477  crio 7297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-riota 7298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator