Step | Hyp | Ref
| Expression |
1 | | weiunfr.1 |
. . . 4
⊢ 𝐹 = (𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) |
2 | | breq2 5173 |
. . . . . . . . 9
⊢ (𝑢 = 𝑚 → (𝑣𝑅𝑢 ↔ 𝑣𝑅𝑚)) |
3 | 2 | notbid 318 |
. . . . . . . 8
⊢ (𝑢 = 𝑚 → (¬ 𝑣𝑅𝑢 ↔ ¬ 𝑣𝑅𝑚)) |
4 | 3 | ralbidv 3180 |
. . . . . . 7
⊢ (𝑢 = 𝑚 → (∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢 ↔ ∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑚)) |
5 | 4 | cbvriotavw 7411 |
. . . . . 6
⊢
(℩𝑢
∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢) = (℩𝑚 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑚) |
6 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐴 |
7 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑙𝐴 |
8 | | nfv 1913 |
. . . . . . . . 9
⊢
Ⅎ𝑙 𝑤 ∈ 𝐵 |
9 | | nfcsb1v 3940 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑙 / 𝑥⦌𝐵 |
10 | 9 | nfcri 2895 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑤 ∈ ⦋𝑙 / 𝑥⦌𝐵 |
11 | | csbeq1a 3929 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑙 → 𝐵 = ⦋𝑙 / 𝑥⦌𝐵) |
12 | 11 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑥 = 𝑙 → (𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ⦋𝑙 / 𝑥⦌𝐵)) |
13 | 6, 7, 8, 10, 12 | cbvrabw 3475 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} = {𝑙 ∈ 𝐴 ∣ 𝑤 ∈ ⦋𝑙 / 𝑥⦌𝐵} |
14 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑤 = 𝑘 → (𝑤 ∈ ⦋𝑙 / 𝑥⦌𝐵 ↔ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵)) |
15 | 14 | rabbidv 3446 |
. . . . . . . 8
⊢ (𝑤 = 𝑘 → {𝑙 ∈ 𝐴 ∣ 𝑤 ∈ ⦋𝑙 / 𝑥⦌𝐵} = {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵}) |
16 | 13, 15 | eqtrid 2786 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} = {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵}) |
17 | | breq1 5172 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑛 → (𝑣𝑅𝑚 ↔ 𝑛𝑅𝑚)) |
18 | 17 | notbid 318 |
. . . . . . . . 9
⊢ (𝑣 = 𝑛 → (¬ 𝑣𝑅𝑚 ↔ ¬ 𝑛𝑅𝑚)) |
19 | 18 | adantl 481 |
. . . . . . . 8
⊢ ((𝑤 = 𝑘 ∧ 𝑣 = 𝑛) → (¬ 𝑣𝑅𝑚 ↔ ¬ 𝑛𝑅𝑚)) |
20 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝑤 = 𝑘 ∧ 𝑣 = 𝑛) → {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} = {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵}) |
21 | 19, 20 | cbvraldva2 3351 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → (∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑚 ↔ ∀𝑛 ∈ {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵} ¬ 𝑛𝑅𝑚)) |
22 | 16, 21 | riotaeqbidv 7404 |
. . . . . 6
⊢ (𝑤 = 𝑘 → (℩𝑚 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑚) = (℩𝑚 ∈ {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵}∀𝑛 ∈ {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵} ¬ 𝑛𝑅𝑚)) |
23 | 5, 22 | eqtrid 2786 |
. . . . 5
⊢ (𝑤 = 𝑘 → (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢) = (℩𝑚 ∈ {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵}∀𝑛 ∈ {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵} ¬ 𝑛𝑅𝑚)) |
24 | 23 | cbvmptv 5282 |
. . . 4
⊢ (𝑤 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) = (𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑚 ∈ {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵}∀𝑛 ∈ {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵} ¬ 𝑛𝑅𝑚)) |
25 | | nfcv 2904 |
. . . . . 6
⊢
Ⅎ𝑙𝐵 |
26 | 25, 9, 11 | cbviun 5062 |
. . . . 5
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵 |
27 | 26 | mpteq1i 5265 |
. . . 4
⊢ (𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑚 ∈ {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵}∀𝑛 ∈ {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵} ¬ 𝑛𝑅𝑚)) = (𝑘 ∈ ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵 ↦ (℩𝑚 ∈ {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵}∀𝑛 ∈ {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵} ¬ 𝑛𝑅𝑚)) |
28 | 1, 24, 27 | 3eqtri 2766 |
. . 3
⊢ 𝐹 = (𝑘 ∈ ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵 ↦ (℩𝑚 ∈ {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵}∀𝑛 ∈ {𝑙 ∈ 𝐴 ∣ 𝑘 ∈ ⦋𝑙 / 𝑥⦌𝐵} ¬ 𝑛𝑅𝑚)) |
29 | | weiunfr.2 |
. . . 4
⊢ 𝑇 = {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)))} |
30 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → 𝑦 = 𝑜) |
31 | 26 | a1i 11 |
. . . . . . . 8
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → ∪
𝑥 ∈ 𝐴 𝐵 = ∪ 𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵) |
32 | 30, 31 | eleq12d 2832 |
. . . . . . 7
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → (𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ↔ 𝑜 ∈ ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵)) |
33 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → 𝑧 = 𝑝) |
34 | 33, 31 | eleq12d 2832 |
. . . . . . 7
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → (𝑧 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ↔ 𝑝 ∈ ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵)) |
35 | 32, 34 | anbi12d 631 |
. . . . . 6
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → ((𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ↔ (𝑜 ∈ ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵 ∧ 𝑝 ∈ ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵))) |
36 | 30 | fveq2d 6923 |
. . . . . . . 8
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → (𝐹‘𝑦) = (𝐹‘𝑜)) |
37 | 33 | fveq2d 6923 |
. . . . . . . 8
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → (𝐹‘𝑧) = (𝐹‘𝑝)) |
38 | 36, 37 | breq12d 5182 |
. . . . . . 7
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ↔ (𝐹‘𝑜)𝑅(𝐹‘𝑝))) |
39 | 36, 37 | eqeq12d 2750 |
. . . . . . . 8
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ (𝐹‘𝑜) = (𝐹‘𝑝))) |
40 | 36 | csbeq1d 3919 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → ⦋(𝐹‘𝑦) / 𝑥⦌𝑆 = ⦋(𝐹‘𝑜) / 𝑥⦌𝑆) |
41 | | csbcow 3930 |
. . . . . . . . . 10
⊢
⦋(𝐹‘𝑜) / 𝑙⦌⦋𝑙 / 𝑥⦌𝑆 = ⦋(𝐹‘𝑜) / 𝑥⦌𝑆 |
42 | 40, 41 | eqtr4di 2792 |
. . . . . . . . 9
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → ⦋(𝐹‘𝑦) / 𝑥⦌𝑆 = ⦋(𝐹‘𝑜) / 𝑙⦌⦋𝑙 / 𝑥⦌𝑆) |
43 | 30, 42, 33 | breq123d 5183 |
. . . . . . . 8
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → (𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧 ↔ 𝑜⦋(𝐹‘𝑜) / 𝑙⦌⦋𝑙 / 𝑥⦌𝑆𝑝)) |
44 | 39, 43 | anbi12d 631 |
. . . . . . 7
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → (((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧) ↔ ((𝐹‘𝑜) = (𝐹‘𝑝) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑙⦌⦋𝑙 / 𝑥⦌𝑆𝑝))) |
45 | 38, 44 | orbi12d 917 |
. . . . . 6
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → (((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)) ↔ ((𝐹‘𝑜)𝑅(𝐹‘𝑝) ∨ ((𝐹‘𝑜) = (𝐹‘𝑝) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑙⦌⦋𝑙 / 𝑥⦌𝑆𝑝)))) |
46 | 35, 45 | anbi12d 631 |
. . . . 5
⊢ ((𝑦 = 𝑜 ∧ 𝑧 = 𝑝) → (((𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧))) ↔ ((𝑜 ∈ ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵 ∧ 𝑝 ∈ ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵) ∧ ((𝐹‘𝑜)𝑅(𝐹‘𝑝) ∨ ((𝐹‘𝑜) = (𝐹‘𝑝) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑙⦌⦋𝑙 / 𝑥⦌𝑆𝑝))))) |
47 | 46 | cbvopabv 5242 |
. . . 4
⊢
{〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)))} = {〈𝑜, 𝑝〉 ∣ ((𝑜 ∈ ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵 ∧ 𝑝 ∈ ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵) ∧ ((𝐹‘𝑜)𝑅(𝐹‘𝑝) ∨ ((𝐹‘𝑜) = (𝐹‘𝑝) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑙⦌⦋𝑙 / 𝑥⦌𝑆𝑝)))} |
48 | 29, 47 | eqtri 2762 |
. . 3
⊢ 𝑇 = {〈𝑜, 𝑝〉 ∣ ((𝑜 ∈ ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵 ∧ 𝑝 ∈ ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵) ∧ ((𝐹‘𝑜)𝑅(𝐹‘𝑝) ∨ ((𝐹‘𝑜) = (𝐹‘𝑝) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑙⦌⦋𝑙 / 𝑥⦌𝑆𝑝)))} |
49 | | breq1 5172 |
. . . . . . 7
⊢ (𝑞 = 𝑡 → (𝑞𝑅𝑠 ↔ 𝑡𝑅𝑠)) |
50 | 49 | notbid 318 |
. . . . . 6
⊢ (𝑞 = 𝑡 → (¬ 𝑞𝑅𝑠 ↔ ¬ 𝑡𝑅𝑠)) |
51 | 50 | cbvralvw 3238 |
. . . . 5
⊢
(∀𝑞 ∈
(𝐹 “ 𝑟) ¬ 𝑞𝑅𝑠 ↔ ∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠) |
52 | 51 | a1i 11 |
. . . 4
⊢ (𝑠 ∈ (𝐹 “ 𝑟) → (∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑠 ↔ ∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠)) |
53 | 52 | riotabiia 7422 |
. . 3
⊢
(℩𝑠
∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑠) = (℩𝑠 ∈ (𝐹 “ 𝑟)∀𝑡 ∈ (𝐹 “ 𝑟) ¬ 𝑡𝑅𝑠) |
54 | 28, 48, 53 | weiunfrlem2 36381 |
. 2
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝑆 Fr ⦋𝑙 / 𝑥⦌𝐵) → 𝑇 Fr ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵) |
55 | | nfv 1913 |
. . . 4
⊢
Ⅎ𝑙 𝑆 Fr 𝐵 |
56 | | nfcsb1v 3940 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑙 / 𝑥⦌𝑆 |
57 | 56, 9 | nffr 5673 |
. . . 4
⊢
Ⅎ𝑥⦋𝑙 / 𝑥⦌𝑆 Fr ⦋𝑙 / 𝑥⦌𝐵 |
58 | | csbeq1a 3929 |
. . . . . 6
⊢ (𝑥 = 𝑙 → 𝑆 = ⦋𝑙 / 𝑥⦌𝑆) |
59 | | freq1 5669 |
. . . . . 6
⊢ (𝑆 = ⦋𝑙 / 𝑥⦌𝑆 → (𝑆 Fr 𝐵 ↔ ⦋𝑙 / 𝑥⦌𝑆 Fr 𝐵)) |
60 | 58, 59 | syl 17 |
. . . . 5
⊢ (𝑥 = 𝑙 → (𝑆 Fr 𝐵 ↔ ⦋𝑙 / 𝑥⦌𝑆 Fr 𝐵)) |
61 | | freq2 5670 |
. . . . . 6
⊢ (𝐵 = ⦋𝑙 / 𝑥⦌𝐵 → (⦋𝑙 / 𝑥⦌𝑆 Fr 𝐵 ↔ ⦋𝑙 / 𝑥⦌𝑆 Fr ⦋𝑙 / 𝑥⦌𝐵)) |
62 | 11, 61 | syl 17 |
. . . . 5
⊢ (𝑥 = 𝑙 → (⦋𝑙 / 𝑥⦌𝑆 Fr 𝐵 ↔ ⦋𝑙 / 𝑥⦌𝑆 Fr ⦋𝑙 / 𝑥⦌𝐵)) |
63 | 60, 62 | bitrd 279 |
. . . 4
⊢ (𝑥 = 𝑙 → (𝑆 Fr 𝐵 ↔ ⦋𝑙 / 𝑥⦌𝑆 Fr ⦋𝑙 / 𝑥⦌𝐵)) |
64 | 55, 57, 63 | cbvralw 3307 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝑆 Fr 𝐵 ↔ ∀𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝑆 Fr ⦋𝑙 / 𝑥⦌𝐵) |
65 | 64 | 3anbi3i 1159 |
. 2
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ↔ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝑆 Fr ⦋𝑙 / 𝑥⦌𝐵)) |
66 | | freq2 5670 |
. . 3
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵 → (𝑇 Fr ∪
𝑥 ∈ 𝐴 𝐵 ↔ 𝑇 Fr ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵)) |
67 | 26, 66 | ax-mp 5 |
. 2
⊢ (𝑇 Fr ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑇 Fr ∪
𝑙 ∈ 𝐴 ⦋𝑙 / 𝑥⦌𝐵) |
68 | 54, 65, 67 | 3imtr4i 292 |
1
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) → 𝑇 Fr ∪
𝑥 ∈ 𝐴 𝐵) |