| Step | Hyp | Ref
| Expression |
| 1 | | csbeq1 3884 |
. . . . . . . 8
⊢ (𝑠 = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) → ⦋𝑠 / 𝑥⦌𝑆 = ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆) |
| 2 | | csbeq1 3884 |
. . . . . . . 8
⊢ (𝑠 = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) → ⦋𝑠 / 𝑥⦌𝐵 = ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) |
| 3 | 1, 2 | freq12d 5636 |
. . . . . . 7
⊢ (𝑠 = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) → (⦋𝑠 / 𝑥⦌𝑆 Fr ⦋𝑠 / 𝑥⦌𝐵 ↔ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆 Fr ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵)) |
| 4 | | simpl3 1193 |
. . . . . . . 8
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) |
| 5 | | nfv 1913 |
. . . . . . . . 9
⊢
Ⅎ𝑠 𝑆 Fr 𝐵 |
| 6 | | nfcsb1v 3905 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑠 / 𝑥⦌𝑆 |
| 7 | | nfcsb1v 3905 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑠 / 𝑥⦌𝐵 |
| 8 | 6, 7 | nffr 5640 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑠 / 𝑥⦌𝑆 Fr ⦋𝑠 / 𝑥⦌𝐵 |
| 9 | | csbeq1a 3895 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → 𝑆 = ⦋𝑠 / 𝑥⦌𝑆) |
| 10 | | csbeq1a 3895 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → 𝐵 = ⦋𝑠 / 𝑥⦌𝐵) |
| 11 | 9, 10 | freq12d 5636 |
. . . . . . . . 9
⊢ (𝑥 = 𝑠 → (𝑆 Fr 𝐵 ↔ ⦋𝑠 / 𝑥⦌𝑆 Fr ⦋𝑠 / 𝑥⦌𝐵)) |
| 12 | 5, 8, 11 | cbvralw 3290 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 𝑆 Fr 𝐵 ↔ ∀𝑠 ∈ 𝐴 ⦋𝑠 / 𝑥⦌𝑆 Fr ⦋𝑠 / 𝑥⦌𝐵) |
| 13 | 4, 12 | sylib 218 |
. . . . . . 7
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → ∀𝑠 ∈ 𝐴 ⦋𝑠 / 𝑥⦌𝑆 Fr ⦋𝑠 / 𝑥⦌𝐵) |
| 14 | | weiun.1 |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑤 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ↦ (℩𝑢 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵}∀𝑣 ∈ {𝑥 ∈ 𝐴 ∣ 𝑤 ∈ 𝐵} ¬ 𝑣𝑅𝑢)) |
| 15 | | weiun.2 |
. . . . . . . . . . 11
⊢ 𝑇 = {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑦)𝑅(𝐹‘𝑧) ∨ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦⦋(𝐹‘𝑦) / 𝑥⦌𝑆𝑧)))} |
| 16 | | simpl1 1191 |
. . . . . . . . . . 11
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → 𝑅 We 𝐴) |
| 17 | | simpl2 1192 |
. . . . . . . . . . 11
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → 𝑅 Se 𝐴) |
| 18 | 14, 15, 16, 17 | weiunlem2 36405 |
. . . . . . . . . 10
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵 ∧ ∀𝑠 ∈ 𝐴 ∀𝑡 ∈ ⦋ 𝑠 / 𝑥⦌𝐵 ¬ 𝑠𝑅(𝐹‘𝑡))) |
| 19 | 18 | simp1d 1142 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → 𝐹:∪ 𝑥 ∈ 𝐴 𝐵⟶𝐴) |
| 20 | 19 | fimassd 6738 |
. . . . . . . 8
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (𝐹 “ 𝑟) ⊆ 𝐴) |
| 21 | | eqid 2734 |
. . . . . . . . . 10
⊢
(℩𝑝
∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) |
| 22 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → 𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵) |
| 23 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → 𝑟 ≠ ∅) |
| 24 | 14, 15, 16, 17, 21, 22, 23 | weiunfrlem 36406 |
. . . . . . . . 9
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → ((℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) ∈ (𝐹 “ 𝑟) ∧ ∀𝑡 ∈ 𝑟 ¬ (𝐹‘𝑡)𝑅(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) ∧ ∀𝑡 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵)(𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) |
| 25 | 24 | simp1d 1142 |
. . . . . . . 8
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) ∈ (𝐹 “ 𝑟)) |
| 26 | 20, 25 | sseldd 3966 |
. . . . . . 7
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) ∈ 𝐴) |
| 27 | 3, 13, 26 | rspcdva 3607 |
. . . . . 6
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) →
⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆 Fr ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) |
| 28 | | inss2 4220 |
. . . . . . 7
⊢ (𝑟 ∩
⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ⊆
⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵 |
| 29 | 28 | a1i 11 |
. . . . . 6
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ⊆
⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) |
| 30 | | vex 3468 |
. . . . . . . 8
⊢ 𝑟 ∈ V |
| 31 | 30 | inex1 5299 |
. . . . . . 7
⊢ (𝑟 ∩
⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∈ V |
| 32 | 31 | a1i 11 |
. . . . . 6
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∈ V) |
| 33 | 19 | ffund 6721 |
. . . . . . . 8
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → Fun 𝐹) |
| 34 | | fvelima 6955 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧
(℩𝑝 ∈
(𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) ∈ (𝐹 “ 𝑟)) → ∃𝑡 ∈ 𝑟 (𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝)) |
| 35 | 33, 25, 34 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → ∃𝑡 ∈ 𝑟 (𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝)) |
| 36 | | simprl 770 |
. . . . . . . . 9
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑡 ∈ 𝑟 ∧ (𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) → 𝑡 ∈ 𝑟) |
| 37 | | simplrl 776 |
. . . . . . . . . . . 12
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑡 ∈ 𝑟 ∧ (𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) → 𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵) |
| 38 | 37, 36 | sseldd 3966 |
. . . . . . . . . . 11
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑡 ∈ 𝑟 ∧ (𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) → 𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
| 39 | 18 | simp2d 1143 |
. . . . . . . . . . . 12
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → ∀𝑡 ∈ ∪ 𝑥 ∈ 𝐴 𝐵𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵) |
| 40 | 39 | r19.21bi 3238 |
. . . . . . . . . . 11
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ 𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → 𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵) |
| 41 | 38, 40 | syldan 591 |
. . . . . . . . . 10
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑡 ∈ 𝑟 ∧ (𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) → 𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵) |
| 42 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑡 ∈ 𝑟 ∧ (𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) → (𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝)) |
| 43 | 42 | csbeq1d 3885 |
. . . . . . . . . 10
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑡 ∈ 𝑟 ∧ (𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) → ⦋(𝐹‘𝑡) / 𝑥⦌𝐵 = ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) |
| 44 | 41, 43 | eleqtrd 2835 |
. . . . . . . . 9
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑡 ∈ 𝑟 ∧ (𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) → 𝑡 ∈ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) |
| 45 | 36, 44 | elind 4182 |
. . . . . . . 8
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑡 ∈ 𝑟 ∧ (𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) → 𝑡 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵)) |
| 46 | 45 | ne0d 4324 |
. . . . . . 7
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑡 ∈ 𝑟 ∧ (𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) → (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ≠ ∅) |
| 47 | 35, 46 | rexlimddv 3148 |
. . . . . 6
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ≠ ∅) |
| 48 | 27, 29, 32, 47 | frd 5623 |
. . . . 5
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → ∃𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵)∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛) |
| 49 | | simprl 770 |
. . . . . 6
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) → 𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵)) |
| 50 | 49 | elin1d 4186 |
. . . . 5
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) → 𝑛 ∈ 𝑟) |
| 51 | | fveq2 6887 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑜 → (𝐹‘𝑡) = (𝐹‘𝑜)) |
| 52 | 51 | breq1d 5135 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑜 → ((𝐹‘𝑡)𝑅(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) ↔ (𝐹‘𝑜)𝑅(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) |
| 53 | 52 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑜 → (¬ (𝐹‘𝑡)𝑅(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) ↔ ¬ (𝐹‘𝑜)𝑅(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) |
| 54 | 24 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → ((℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) ∈ (𝐹 “ 𝑟) ∧ ∀𝑡 ∈ 𝑟 ¬ (𝐹‘𝑡)𝑅(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) ∧ ∀𝑡 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵)(𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) |
| 55 | 54 | simp2d 1143 |
. . . . . . . . . . 11
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → ∀𝑡 ∈ 𝑟 ¬ (𝐹‘𝑡)𝑅(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝)) |
| 56 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → 𝑜 ∈ 𝑟) |
| 57 | 53, 55, 56 | rspcdva 3607 |
. . . . . . . . . 10
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → ¬ (𝐹‘𝑜)𝑅(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝)) |
| 58 | | fveqeq2 6896 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑛 → ((𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) ↔ (𝐹‘𝑛) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) |
| 59 | 54 | simp3d 1144 |
. . . . . . . . . . . 12
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → ∀𝑡 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵)(𝐹‘𝑡) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝)) |
| 60 | | simplrl 776 |
. . . . . . . . . . . 12
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → 𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵)) |
| 61 | 58, 59, 60 | rspcdva 3607 |
. . . . . . . . . . 11
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → (𝐹‘𝑛) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝)) |
| 62 | 61 | breq2d 5137 |
. . . . . . . . . 10
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → ((𝐹‘𝑜)𝑅(𝐹‘𝑛) ↔ (𝐹‘𝑜)𝑅(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝))) |
| 63 | 57, 62 | mtbird 325 |
. . . . . . . . 9
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → ¬ (𝐹‘𝑜)𝑅(𝐹‘𝑛)) |
| 64 | | breq1 5128 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑜 → (𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛 ↔ 𝑜⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) |
| 65 | 64 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑜 → (¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛 ↔ ¬ 𝑜⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) |
| 66 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) → ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛) |
| 67 | 66 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛) |
| 68 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → 𝑜 ∈ 𝑟) |
| 69 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑜 → 𝑡 = 𝑜) |
| 70 | 51 | csbeq1d 3885 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑜 → ⦋(𝐹‘𝑡) / 𝑥⦌𝐵 = ⦋(𝐹‘𝑜) / 𝑥⦌𝐵) |
| 71 | 69, 70 | eleq12d 2827 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑜 → (𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵 ↔ 𝑜 ∈ ⦋(𝐹‘𝑜) / 𝑥⦌𝐵)) |
| 72 | 39 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → ∀𝑡 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝑡 ∈ ⦋(𝐹‘𝑡) / 𝑥⦌𝐵) |
| 73 | 22 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → 𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵) |
| 74 | 73, 56 | sseldd 3966 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → 𝑜 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
| 75 | 74 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → 𝑜 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
| 76 | 71, 72, 75 | rspcdva 3607 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → 𝑜 ∈ ⦋(𝐹‘𝑜) / 𝑥⦌𝐵) |
| 77 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → (𝐹‘𝑜) = (𝐹‘𝑛)) |
| 78 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → (𝐹‘𝑛) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝)) |
| 79 | 77, 78 | eqtrd 2769 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → (𝐹‘𝑜) = (℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝)) |
| 80 | 79 | csbeq1d 3885 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → ⦋(𝐹‘𝑜) / 𝑥⦌𝐵 = ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) |
| 81 | 76, 80 | eleqtrd 2835 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → 𝑜 ∈ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) |
| 82 | 68, 81 | elind 4182 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → 𝑜 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵)) |
| 83 | 65, 67, 82 | rspcdva 3607 |
. . . . . . . . . . . 12
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → ¬ 𝑜⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛) |
| 84 | 79 | csbeq1d 3885 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → ⦋(𝐹‘𝑜) / 𝑥⦌𝑆 = ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆) |
| 85 | 84 | breqd 5136 |
. . . . . . . . . . . 12
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → (𝑜⦋(𝐹‘𝑜) / 𝑥⦌𝑆𝑛 ↔ 𝑜⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) |
| 86 | 83, 85 | mtbird 325 |
. . . . . . . . . . 11
⊢
((((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) ∧ (𝐹‘𝑜) = (𝐹‘𝑛)) → ¬ 𝑜⦋(𝐹‘𝑜) / 𝑥⦌𝑆𝑛) |
| 87 | 86 | ex 412 |
. . . . . . . . . 10
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → ((𝐹‘𝑜) = (𝐹‘𝑛) → ¬ 𝑜⦋(𝐹‘𝑜) / 𝑥⦌𝑆𝑛)) |
| 88 | | imnan 399 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑜) = (𝐹‘𝑛) → ¬ 𝑜⦋(𝐹‘𝑜) / 𝑥⦌𝑆𝑛) ↔ ¬ ((𝐹‘𝑜) = (𝐹‘𝑛) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑥⦌𝑆𝑛)) |
| 89 | 87, 88 | sylib 218 |
. . . . . . . . 9
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → ¬ ((𝐹‘𝑜) = (𝐹‘𝑛) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑥⦌𝑆𝑛)) |
| 90 | | pm4.56 990 |
. . . . . . . . . 10
⊢ ((¬
(𝐹‘𝑜)𝑅(𝐹‘𝑛) ∧ ¬ ((𝐹‘𝑜) = (𝐹‘𝑛) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑥⦌𝑆𝑛)) ↔ ¬ ((𝐹‘𝑜)𝑅(𝐹‘𝑛) ∨ ((𝐹‘𝑜) = (𝐹‘𝑛) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑥⦌𝑆𝑛))) |
| 91 | 90 | biimpi 216 |
. . . . . . . . 9
⊢ ((¬
(𝐹‘𝑜)𝑅(𝐹‘𝑛) ∧ ¬ ((𝐹‘𝑜) = (𝐹‘𝑛) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑥⦌𝑆𝑛)) → ¬ ((𝐹‘𝑜)𝑅(𝐹‘𝑛) ∨ ((𝐹‘𝑜) = (𝐹‘𝑛) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑥⦌𝑆𝑛))) |
| 92 | 63, 89, 91 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → ¬ ((𝐹‘𝑜)𝑅(𝐹‘𝑛) ∨ ((𝐹‘𝑜) = (𝐹‘𝑛) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑥⦌𝑆𝑛))) |
| 93 | 92 | intnand 488 |
. . . . . . 7
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → ¬ ((𝑜 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑛 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑜)𝑅(𝐹‘𝑛) ∨ ((𝐹‘𝑜) = (𝐹‘𝑛) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑥⦌𝑆𝑛)))) |
| 94 | 14, 15 | weiunlem1 36404 |
. . . . . . 7
⊢ (𝑜𝑇𝑛 ↔ ((𝑜 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑛 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ ((𝐹‘𝑜)𝑅(𝐹‘𝑛) ∨ ((𝐹‘𝑜) = (𝐹‘𝑛) ∧ 𝑜⦋(𝐹‘𝑜) / 𝑥⦌𝑆𝑛)))) |
| 95 | 93, 94 | sylnibr 329 |
. . . . . 6
⊢
(((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) ∧ 𝑜 ∈ 𝑟) → ¬ 𝑜𝑇𝑛) |
| 96 | 95 | ralrimiva 3133 |
. . . . 5
⊢ ((((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) ∧ (𝑛 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ∧ ∀𝑚 ∈ (𝑟 ∩ ⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝐵) ¬ 𝑚⦋(℩𝑝 ∈ (𝐹 “ 𝑟)∀𝑞 ∈ (𝐹 “ 𝑟) ¬ 𝑞𝑅𝑝) / 𝑥⦌𝑆𝑛)) → ∀𝑜 ∈ 𝑟 ¬ 𝑜𝑇𝑛) |
| 97 | 48, 50, 96 | reximssdv 3160 |
. . . 4
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) ∧ (𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅)) → ∃𝑛 ∈ 𝑟 ∀𝑜 ∈ 𝑟 ¬ 𝑜𝑇𝑛) |
| 98 | 97 | ex 412 |
. . 3
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) → ((𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅) → ∃𝑛 ∈ 𝑟 ∀𝑜 ∈ 𝑟 ¬ 𝑜𝑇𝑛)) |
| 99 | 98 | alrimiv 1926 |
. 2
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) → ∀𝑟((𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅) → ∃𝑛 ∈ 𝑟 ∀𝑜 ∈ 𝑟 ¬ 𝑜𝑇𝑛)) |
| 100 | | df-fr 5619 |
. 2
⊢ (𝑇 Fr ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑟((𝑟 ⊆ ∪
𝑥 ∈ 𝐴 𝐵 ∧ 𝑟 ≠ ∅) → ∃𝑛 ∈ 𝑟 ∀𝑜 ∈ 𝑟 ¬ 𝑜𝑇𝑛)) |
| 101 | 99, 100 | sylibr 234 |
1
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑆 Fr 𝐵) → 𝑇 Fr ∪
𝑥 ∈ 𝐴 𝐵) |