Users' Mathboxes Mathbox for Matthew House < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weiunfr Structured version   Visualization version   GIF version

Theorem weiunfr 36382
Description: A well-founded relation on an indexed union can be constructed from a well-ordering on its index set and a collection of well-founded relations on its members. (Contributed by Matthew House, 23-Aug-2025.)
Hypotheses
Ref Expression
weiunfr.1 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
weiunfr.2 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
Assertion
Ref Expression
weiunfr ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝑆 Fr 𝐵) → 𝑇 Fr 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑢,𝑣,𝑤   𝑦,𝐴,𝑧,𝑥   𝑢,𝐵,𝑣,𝑤   𝑦,𝐵,𝑧   𝑦,𝐹,𝑧   𝑢,𝑅,𝑣,𝑤   𝑦,𝑅,𝑧   𝑦,𝑆,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑤,𝑣,𝑢)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐹(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem weiunfr
Dummy variables 𝑛 𝑟 𝑠 𝑙 𝑜 𝑝 𝑡 𝑘 𝑚 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weiunfr.1 . . . 4 𝐹 = (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢))
2 breq2 5173 . . . . . . . . 9 (𝑢 = 𝑚 → (𝑣𝑅𝑢𝑣𝑅𝑚))
32notbid 318 . . . . . . . 8 (𝑢 = 𝑚 → (¬ 𝑣𝑅𝑢 ↔ ¬ 𝑣𝑅𝑚))
43ralbidv 3180 . . . . . . 7 (𝑢 = 𝑚 → (∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢 ↔ ∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑚))
54cbvriotavw 7411 . . . . . 6 (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢) = (𝑚 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑚)
6 nfcv 2904 . . . . . . . . 9 𝑥𝐴
7 nfcv 2904 . . . . . . . . 9 𝑙𝐴
8 nfv 1913 . . . . . . . . 9 𝑙 𝑤𝐵
9 nfcsb1v 3940 . . . . . . . . . 10 𝑥𝑙 / 𝑥𝐵
109nfcri 2895 . . . . . . . . 9 𝑥 𝑤𝑙 / 𝑥𝐵
11 csbeq1a 3929 . . . . . . . . . 10 (𝑥 = 𝑙𝐵 = 𝑙 / 𝑥𝐵)
1211eleq2d 2824 . . . . . . . . 9 (𝑥 = 𝑙 → (𝑤𝐵𝑤𝑙 / 𝑥𝐵))
136, 7, 8, 10, 12cbvrabw 3475 . . . . . . . 8 {𝑥𝐴𝑤𝐵} = {𝑙𝐴𝑤𝑙 / 𝑥𝐵}
14 eleq1w 2821 . . . . . . . . 9 (𝑤 = 𝑘 → (𝑤𝑙 / 𝑥𝐵𝑘𝑙 / 𝑥𝐵))
1514rabbidv 3446 . . . . . . . 8 (𝑤 = 𝑘 → {𝑙𝐴𝑤𝑙 / 𝑥𝐵} = {𝑙𝐴𝑘𝑙 / 𝑥𝐵})
1613, 15eqtrid 2786 . . . . . . 7 (𝑤 = 𝑘 → {𝑥𝐴𝑤𝐵} = {𝑙𝐴𝑘𝑙 / 𝑥𝐵})
17 breq1 5172 . . . . . . . . . 10 (𝑣 = 𝑛 → (𝑣𝑅𝑚𝑛𝑅𝑚))
1817notbid 318 . . . . . . . . 9 (𝑣 = 𝑛 → (¬ 𝑣𝑅𝑚 ↔ ¬ 𝑛𝑅𝑚))
1918adantl 481 . . . . . . . 8 ((𝑤 = 𝑘𝑣 = 𝑛) → (¬ 𝑣𝑅𝑚 ↔ ¬ 𝑛𝑅𝑚))
2016adantr 480 . . . . . . . 8 ((𝑤 = 𝑘𝑣 = 𝑛) → {𝑥𝐴𝑤𝐵} = {𝑙𝐴𝑘𝑙 / 𝑥𝐵})
2119, 20cbvraldva2 3351 . . . . . . 7 (𝑤 = 𝑘 → (∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑚 ↔ ∀𝑛 ∈ {𝑙𝐴𝑘𝑙 / 𝑥𝐵} ¬ 𝑛𝑅𝑚))
2216, 21riotaeqbidv 7404 . . . . . 6 (𝑤 = 𝑘 → (𝑚 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑚) = (𝑚 ∈ {𝑙𝐴𝑘𝑙 / 𝑥𝐵}∀𝑛 ∈ {𝑙𝐴𝑘𝑙 / 𝑥𝐵} ¬ 𝑛𝑅𝑚))
235, 22eqtrid 2786 . . . . 5 (𝑤 = 𝑘 → (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢) = (𝑚 ∈ {𝑙𝐴𝑘𝑙 / 𝑥𝐵}∀𝑛 ∈ {𝑙𝐴𝑘𝑙 / 𝑥𝐵} ¬ 𝑛𝑅𝑚))
2423cbvmptv 5282 . . . 4 (𝑤 𝑥𝐴 𝐵 ↦ (𝑢 ∈ {𝑥𝐴𝑤𝐵}∀𝑣 ∈ {𝑥𝐴𝑤𝐵} ¬ 𝑣𝑅𝑢)) = (𝑘 𝑥𝐴 𝐵 ↦ (𝑚 ∈ {𝑙𝐴𝑘𝑙 / 𝑥𝐵}∀𝑛 ∈ {𝑙𝐴𝑘𝑙 / 𝑥𝐵} ¬ 𝑛𝑅𝑚))
25 nfcv 2904 . . . . . 6 𝑙𝐵
2625, 9, 11cbviun 5062 . . . . 5 𝑥𝐴 𝐵 = 𝑙𝐴 𝑙 / 𝑥𝐵
2726mpteq1i 5265 . . . 4 (𝑘 𝑥𝐴 𝐵 ↦ (𝑚 ∈ {𝑙𝐴𝑘𝑙 / 𝑥𝐵}∀𝑛 ∈ {𝑙𝐴𝑘𝑙 / 𝑥𝐵} ¬ 𝑛𝑅𝑚)) = (𝑘 𝑙𝐴 𝑙 / 𝑥𝐵 ↦ (𝑚 ∈ {𝑙𝐴𝑘𝑙 / 𝑥𝐵}∀𝑛 ∈ {𝑙𝐴𝑘𝑙 / 𝑥𝐵} ¬ 𝑛𝑅𝑚))
281, 24, 273eqtri 2766 . . 3 𝐹 = (𝑘 𝑙𝐴 𝑙 / 𝑥𝐵 ↦ (𝑚 ∈ {𝑙𝐴𝑘𝑙 / 𝑥𝐵}∀𝑛 ∈ {𝑙𝐴𝑘𝑙 / 𝑥𝐵} ¬ 𝑛𝑅𝑚))
29 weiunfr.2 . . . 4 𝑇 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))}
30 simpl 482 . . . . . . . 8 ((𝑦 = 𝑜𝑧 = 𝑝) → 𝑦 = 𝑜)
3126a1i 11 . . . . . . . 8 ((𝑦 = 𝑜𝑧 = 𝑝) → 𝑥𝐴 𝐵 = 𝑙𝐴 𝑙 / 𝑥𝐵)
3230, 31eleq12d 2832 . . . . . . 7 ((𝑦 = 𝑜𝑧 = 𝑝) → (𝑦 𝑥𝐴 𝐵𝑜 𝑙𝐴 𝑙 / 𝑥𝐵))
33 simpr 484 . . . . . . . 8 ((𝑦 = 𝑜𝑧 = 𝑝) → 𝑧 = 𝑝)
3433, 31eleq12d 2832 . . . . . . 7 ((𝑦 = 𝑜𝑧 = 𝑝) → (𝑧 𝑥𝐴 𝐵𝑝 𝑙𝐴 𝑙 / 𝑥𝐵))
3532, 34anbi12d 631 . . . . . 6 ((𝑦 = 𝑜𝑧 = 𝑝) → ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ↔ (𝑜 𝑙𝐴 𝑙 / 𝑥𝐵𝑝 𝑙𝐴 𝑙 / 𝑥𝐵)))
3630fveq2d 6923 . . . . . . . 8 ((𝑦 = 𝑜𝑧 = 𝑝) → (𝐹𝑦) = (𝐹𝑜))
3733fveq2d 6923 . . . . . . . 8 ((𝑦 = 𝑜𝑧 = 𝑝) → (𝐹𝑧) = (𝐹𝑝))
3836, 37breq12d 5182 . . . . . . 7 ((𝑦 = 𝑜𝑧 = 𝑝) → ((𝐹𝑦)𝑅(𝐹𝑧) ↔ (𝐹𝑜)𝑅(𝐹𝑝)))
3936, 37eqeq12d 2750 . . . . . . . 8 ((𝑦 = 𝑜𝑧 = 𝑝) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝐹𝑜) = (𝐹𝑝)))
4036csbeq1d 3919 . . . . . . . . . 10 ((𝑦 = 𝑜𝑧 = 𝑝) → (𝐹𝑦) / 𝑥𝑆 = (𝐹𝑜) / 𝑥𝑆)
41 csbcow 3930 . . . . . . . . . 10 (𝐹𝑜) / 𝑙𝑙 / 𝑥𝑆 = (𝐹𝑜) / 𝑥𝑆
4240, 41eqtr4di 2792 . . . . . . . . 9 ((𝑦 = 𝑜𝑧 = 𝑝) → (𝐹𝑦) / 𝑥𝑆 = (𝐹𝑜) / 𝑙𝑙 / 𝑥𝑆)
4330, 42, 33breq123d 5183 . . . . . . . 8 ((𝑦 = 𝑜𝑧 = 𝑝) → (𝑦(𝐹𝑦) / 𝑥𝑆𝑧𝑜(𝐹𝑜) / 𝑙𝑙 / 𝑥𝑆𝑝))
4439, 43anbi12d 631 . . . . . . 7 ((𝑦 = 𝑜𝑧 = 𝑝) → (((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧) ↔ ((𝐹𝑜) = (𝐹𝑝) ∧ 𝑜(𝐹𝑜) / 𝑙𝑙 / 𝑥𝑆𝑝)))
4538, 44orbi12d 917 . . . . . 6 ((𝑦 = 𝑜𝑧 = 𝑝) → (((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)) ↔ ((𝐹𝑜)𝑅(𝐹𝑝) ∨ ((𝐹𝑜) = (𝐹𝑝) ∧ 𝑜(𝐹𝑜) / 𝑙𝑙 / 𝑥𝑆𝑝))))
4635, 45anbi12d 631 . . . . 5 ((𝑦 = 𝑜𝑧 = 𝑝) → (((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧))) ↔ ((𝑜 𝑙𝐴 𝑙 / 𝑥𝐵𝑝 𝑙𝐴 𝑙 / 𝑥𝐵) ∧ ((𝐹𝑜)𝑅(𝐹𝑝) ∨ ((𝐹𝑜) = (𝐹𝑝) ∧ 𝑜(𝐹𝑜) / 𝑙𝑙 / 𝑥𝑆𝑝)))))
4746cbvopabv 5242 . . . 4 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐵) ∧ ((𝐹𝑦)𝑅(𝐹𝑧) ∨ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦(𝐹𝑦) / 𝑥𝑆𝑧)))} = {⟨𝑜, 𝑝⟩ ∣ ((𝑜 𝑙𝐴 𝑙 / 𝑥𝐵𝑝 𝑙𝐴 𝑙 / 𝑥𝐵) ∧ ((𝐹𝑜)𝑅(𝐹𝑝) ∨ ((𝐹𝑜) = (𝐹𝑝) ∧ 𝑜(𝐹𝑜) / 𝑙𝑙 / 𝑥𝑆𝑝)))}
4829, 47eqtri 2762 . . 3 𝑇 = {⟨𝑜, 𝑝⟩ ∣ ((𝑜 𝑙𝐴 𝑙 / 𝑥𝐵𝑝 𝑙𝐴 𝑙 / 𝑥𝐵) ∧ ((𝐹𝑜)𝑅(𝐹𝑝) ∨ ((𝐹𝑜) = (𝐹𝑝) ∧ 𝑜(𝐹𝑜) / 𝑙𝑙 / 𝑥𝑆𝑝)))}
49 breq1 5172 . . . . . . 7 (𝑞 = 𝑡 → (𝑞𝑅𝑠𝑡𝑅𝑠))
5049notbid 318 . . . . . 6 (𝑞 = 𝑡 → (¬ 𝑞𝑅𝑠 ↔ ¬ 𝑡𝑅𝑠))
5150cbvralvw 3238 . . . . 5 (∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑠 ↔ ∀𝑡 ∈ (𝐹𝑟) ¬ 𝑡𝑅𝑠)
5251a1i 11 . . . 4 (𝑠 ∈ (𝐹𝑟) → (∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑠 ↔ ∀𝑡 ∈ (𝐹𝑟) ¬ 𝑡𝑅𝑠))
5352riotabiia 7422 . . 3 (𝑠 ∈ (𝐹𝑟)∀𝑞 ∈ (𝐹𝑟) ¬ 𝑞𝑅𝑠) = (𝑠 ∈ (𝐹𝑟)∀𝑡 ∈ (𝐹𝑟) ¬ 𝑡𝑅𝑠)
5428, 48, 53weiunfrlem2 36381 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑙𝐴 𝑙 / 𝑥𝑆 Fr 𝑙 / 𝑥𝐵) → 𝑇 Fr 𝑙𝐴 𝑙 / 𝑥𝐵)
55 nfv 1913 . . . 4 𝑙 𝑆 Fr 𝐵
56 nfcsb1v 3940 . . . . 5 𝑥𝑙 / 𝑥𝑆
5756, 9nffr 5673 . . . 4 𝑥𝑙 / 𝑥𝑆 Fr 𝑙 / 𝑥𝐵
58 csbeq1a 3929 . . . . . 6 (𝑥 = 𝑙𝑆 = 𝑙 / 𝑥𝑆)
59 freq1 5669 . . . . . 6 (𝑆 = 𝑙 / 𝑥𝑆 → (𝑆 Fr 𝐵𝑙 / 𝑥𝑆 Fr 𝐵))
6058, 59syl 17 . . . . 5 (𝑥 = 𝑙 → (𝑆 Fr 𝐵𝑙 / 𝑥𝑆 Fr 𝐵))
61 freq2 5670 . . . . . 6 (𝐵 = 𝑙 / 𝑥𝐵 → (𝑙 / 𝑥𝑆 Fr 𝐵𝑙 / 𝑥𝑆 Fr 𝑙 / 𝑥𝐵))
6211, 61syl 17 . . . . 5 (𝑥 = 𝑙 → (𝑙 / 𝑥𝑆 Fr 𝐵𝑙 / 𝑥𝑆 Fr 𝑙 / 𝑥𝐵))
6360, 62bitrd 279 . . . 4 (𝑥 = 𝑙 → (𝑆 Fr 𝐵𝑙 / 𝑥𝑆 Fr 𝑙 / 𝑥𝐵))
6455, 57, 63cbvralw 3307 . . 3 (∀𝑥𝐴 𝑆 Fr 𝐵 ↔ ∀𝑙𝐴 𝑙 / 𝑥𝑆 Fr 𝑙 / 𝑥𝐵)
65643anbi3i 1159 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝑆 Fr 𝐵) ↔ (𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑙𝐴 𝑙 / 𝑥𝑆 Fr 𝑙 / 𝑥𝐵))
66 freq2 5670 . . 3 ( 𝑥𝐴 𝐵 = 𝑙𝐴 𝑙 / 𝑥𝐵 → (𝑇 Fr 𝑥𝐴 𝐵𝑇 Fr 𝑙𝐴 𝑙 / 𝑥𝐵))
6726, 66ax-mp 5 . 2 (𝑇 Fr 𝑥𝐴 𝐵𝑇 Fr 𝑙𝐴 𝑙 / 𝑥𝐵)
6854, 65, 673imtr4i 292 1 ((𝑅 We 𝐴𝑅 Se 𝐴 ∧ ∀𝑥𝐴 𝑆 Fr 𝐵) → 𝑇 Fr 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2103  wral 3063  {crab 3438  csb 3915   ciun 5019   class class class wbr 5169  {copab 5231  cmpt 5252   Fr wfr 5651   Se wse 5652   We wwe 5653  cima 5702  cfv 6572  crio 7400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-fv 6580  df-riota 7401
This theorem is referenced by:  weiunwe  36384
  Copyright terms: Public domain W3C validator