MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrdmss Structured version   Visualization version   GIF version

Theorem wfrdmss 8223
Description: The domain of the well-ordered recursion generator is a subclass of 𝐴. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
Hypothesis
Ref Expression
wfrrel.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrdmss dom 𝐹𝐴

Proof of Theorem wfrdmss
StepHypRef Expression
1 wfrrel.1 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
2 df-wrecs 8190 . . 3 wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
31, 2eqtri 2764 . 2 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
43frrdmss 8185 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3897  dom cdm 5614  ccom 5618  2nd c2nd 7890  frecscfrecs 8158  wrecscwrecs 8189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-iota 6425  df-fun 6475  df-fn 6476  df-fv 6481  df-ov 7332  df-frecs 8159  df-wrecs 8190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator