MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrdmss Structured version   Visualization version   GIF version

Theorem wfrdmss 8329
Description: The domain of the well-ordered recursion generator is a subclass of 𝐴. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
Hypothesis
Ref Expression
wfrrel.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrdmss dom 𝐹𝐴

Proof of Theorem wfrdmss
StepHypRef Expression
1 wfrrel.1 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
2 df-wrecs 8296 . . 3 wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
31, 2eqtri 2760 . 2 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
43frrdmss 8291 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3948  dom cdm 5676  ccom 5680  2nd c2nd 7973  frecscfrecs 8264  wrecscwrecs 8295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551  df-ov 7411  df-frecs 8265  df-wrecs 8296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator