MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrdmss Structured version   Visualization version   GIF version

Theorem wfrdmss 8300
Description: The domain of the well-ordered recursion generator is a subclass of 𝐴. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
Hypothesis
Ref Expression
wfrrel.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrdmss dom 𝐹𝐴

Proof of Theorem wfrdmss
StepHypRef Expression
1 wfrrel.1 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
2 df-wrecs 8291 . . 3 wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
31, 2eqtri 2752 . 2 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
43frrdmss 8286 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3914  dom cdm 5638  ccom 5642  2nd c2nd 7967  frecscfrecs 8259  wrecscwrecs 8290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-ov 7390  df-frecs 8260  df-wrecs 8291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator