MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrdmss Structured version   Visualization version   GIF version

Theorem frrdmss 8292
Description: Show without using the axiom of replacement that the domain of the well-founded recursion generator is a subclass of 𝐴. (Contributed by Scott Fenton, 18-Nov-2024.)
Hypothesis
Ref Expression
frrrel.1 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrdmss dom 𝐹𝐴

Proof of Theorem frrdmss
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 frrrel.1 . 2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
31, 2frrlem7 8277 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 397  w3a 1088   = wceq 1542  wex 1782  {cab 2710  wral 3062  wss 3949  dom cdm 5677  cres 5679  Predcpred 6300   Fn wfn 6539  cfv 6544  (class class class)co 7409  frecscfrecs 8265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-ov 7412  df-frecs 8266
This theorem is referenced by:  wfrdmss  8330
  Copyright terms: Public domain W3C validator