Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wfrlem3OLD | Structured version Visualization version GIF version |
Description: Lemma for well-ordered recursion. An acceptable function's domain is a subset of 𝐴. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) |
Ref | Expression |
---|---|
wfrlem1OLD.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
Ref | Expression |
---|---|
wfrlem3OLD | ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem1OLD.1 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
2 | 1 | wfrlem1OLD 8170 | . . 3 ⊢ 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} |
3 | 2 | abeq2i 2873 | . 2 ⊢ (𝑔 ∈ 𝐵 ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
4 | fndm 6567 | . . . . . . 7 ⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) | |
5 | 4 | sseq1d 3957 | . . . . . 6 ⊢ (𝑔 Fn 𝑧 → (dom 𝑔 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) |
6 | 5 | biimpar 479 | . . . . 5 ⊢ ((𝑔 Fn 𝑧 ∧ 𝑧 ⊆ 𝐴) → dom 𝑔 ⊆ 𝐴) |
7 | 6 | adantrr 715 | . . . 4 ⊢ ((𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) → dom 𝑔 ⊆ 𝐴) |
8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → dom 𝑔 ⊆ 𝐴) |
9 | 8 | exlimiv 1931 | . 2 ⊢ (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → dom 𝑔 ⊆ 𝐴) |
10 | 3, 9 | sylbi 216 | 1 ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2713 ∀wral 3062 ⊆ wss 3892 dom cdm 5600 ↾ cres 5602 Predcpred 6216 Fn wfn 6453 ‘cfv 6458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-iota 6410 df-fun 6460 df-fn 6461 df-fv 6466 |
This theorem is referenced by: wfrlem5OLD 8175 wfrdmssOLD 8177 |
Copyright terms: Public domain | W3C validator |