| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfrlem3OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version as of 18-Nov-2024. Lemma for well-ordered recursion. An acceptable function's domain is a subset of 𝐴. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) |
| Ref | Expression |
|---|---|
| wfrlem1OLD.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| Ref | Expression |
|---|---|
| wfrlem3OLD | ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfrlem1OLD.1 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
| 2 | 1 | wfrlem1OLD 8322 | . . 3 ⊢ 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} |
| 3 | 2 | eqabri 2878 | . 2 ⊢ (𝑔 ∈ 𝐵 ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
| 4 | fndm 6641 | . . . . . . 7 ⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) | |
| 5 | 4 | sseq1d 3990 | . . . . . 6 ⊢ (𝑔 Fn 𝑧 → (dom 𝑔 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) |
| 6 | 5 | biimpar 477 | . . . . 5 ⊢ ((𝑔 Fn 𝑧 ∧ 𝑧 ⊆ 𝐴) → dom 𝑔 ⊆ 𝐴) |
| 7 | 6 | adantrr 717 | . . . 4 ⊢ ((𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) → dom 𝑔 ⊆ 𝐴) |
| 8 | 7 | 3adant3 1132 | . . 3 ⊢ ((𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → dom 𝑔 ⊆ 𝐴) |
| 9 | 8 | exlimiv 1930 | . 2 ⊢ (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → dom 𝑔 ⊆ 𝐴) |
| 10 | 3, 9 | sylbi 217 | 1 ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 ∀wral 3051 ⊆ wss 3926 dom cdm 5654 ↾ cres 5656 Predcpred 6289 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 |
| This theorem is referenced by: wfrlem5OLD 8327 wfrdmssOLD 8329 |
| Copyright terms: Public domain | W3C validator |